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Abstract
We study the embedding U ′

q(so3) ⊂ Uq(sl3), where Uq(sl3) is a well
known Drinfeld–Jimbo quantum algebra and the algebra U ′

q(so3) is the
cyclically symmetric q-deformation of the universal enveloping algebraU(so3)

of the Lie algebra so3 which is not a Drinfeld–Jimbo quantum algebra.
Finite-dimensional irreducible representations of Uq(sl3) are decomposed into
irreducible representations of U ′

q(so3). An explicit expression for the matrix
of the transition from the Gel’fand–Tsetlin basis for Uq(sl3) to the bases
of irreducible representations of U ′

q(so3) is calculated for representations of
Uq(sl3) with highest weights (l, 0, 0). Entries of this matrix are expressed
in terms of products of dual q-Krawtchouk polynomials and dual q-Hahn
polynomials. Expressions for representation operators of Uq(sl3) in the
U ′

q(so3) basis are given.

PACS numbers: 0220S, 0220U, 0230G

1. Introduction

The embedding SO(3) ⊂ SU(3) is of a great importance for physics [1–3]. On the Lie
algebra level, this embedding is fulfilled by choosing the elements E12 − E21, E13 − E31,
E23 − E32 of the Lie algebra su3 as a basis for the Lie subalgebra so3, where Eij are the
matrices with entries (Eij )rs = δirδjs . The embedding SO(3) ⊂ SU(3) differs essentially
from the embedding SU(2) ⊂ SU(3).

After the appearance of quantum groups and quantum algebras, much attention was paid
to the construction of q-analogues of the embedding SO(3) ⊂ SU(3) (see, for example, [4–
6] and references therein). It is clear now that it is not possible to construct an embedding
Uq(so3) ⊂ Uq(sl3) in such a way that Uq(sl3) and Uq(so3) would be a Hopf algebra and
its Hopf subalgebra, respectively (see [7], chapter 1, for the corresponding definitions). In
constructing an embedding Uq(so3) ⊂ Uq(sl3) one usually tries to take the standard Drinfeld–
Jimbo algebra Uq(sl2) (or an algebra isomorphic to it) as the subalgebra Uq(so3).

Our idea in this paper is the following. If we wish to construct a q-deformation of the
embedding so3 ⊂ sl3, then we have to make a q-deformation of the commutation relations
for the basis I ′

21 ≡ E12 − E21, I ′
31 ≡ E13 − E31, I ′

32 ≡ E23 − E32 of the subalgebra so3. It is
possible to construct such a q-deformation. The role ofUq(so3) in this q-deformed embedding
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Uq(so3) ⊂ Uq(sl3) is the cyclically symmetric algebra generated by the elements I21, I31, I32,
satisfying the relations

[I21, I32]q = I31 [I32, I31]q = I21 [I31, I21]q = I32

where the q-commutator [A,B]q is defined by [A,B]q = q1/2AB − q−1/2BA. This algebra
(we denote it by U ′

q(so3)) was introduced by Fairlie [8]. It is isomorphic to the algebra studied
by Odesski [9]. It was shown in [10] that U ′

q(so3) is not isomorphic to the quantum algebra
Uq(sl2) and can be embedded into a certain extension of Uq(sl2).

The elements I21, I31, I32 of U ′
q(so3) are q-deformations of the elements E12 − E21,

E13 −E31, E23 −E32 of the subalgebra so3 of sl3 and at q → 1 they turn into these elements
of so3. This means that U ′

q(so3) ⊂ Uq(sl3) is a natural q-deformation of the embedding
so3 ⊂ sl3 and may be important for construction of q-deformations of the ‘classical’ models
in nuclear physics. Some other motivations for studying the embedding U ′

q(so3) ⊂ Uq(sl3)

are the following.

(a) The algebraU ′
q(so3) arises naturally as the algebra of observables in 2 + 1 quantum gravity

on the torus (see, for example, [11]). This algebra appears in [12] in the study of geometry
on Teichmüller spaces. It also appears in the theory of links in the algebraic topology
[13]. The embeddingU ′

q(so3) ⊂ Uq(sl3) allows us to use the algebraUq(sl3) for studying
properties of U ′

q(so3). For example, using this embedding it is shown in [14] that U ′
q(so3)

has no divisors of zero and that finite-dimensional representations of the algebra U ′
q(so3)

separate its elements.
(b) The embeddingU ′

q(so3) ⊂ Uq(sl3) is also used for the construction of a quantum analogue
of the symmetric Riemannian space SU(3)/SO(3) (see [15]). For studying harmonic
analysis on this quantum symmetric space we need to know the relationship between
finite-dimensional representations of U ′

q(so3) and Uq(sl3). We study this relationship in
the present paper.

(c) A q-analogue of the theory of harmonic polynomials (q-harmonic polynomials) on the
three-dimensional quantum vector space R

3
q is constructed by using the algebra Uq(sl3)

and its subalgebra U ′
q(so3). (This theory is contained in [16, 17].) If we wish to know

how elements of the algebra Uq(sl3) act upon basis q-harmonic polynomials, we have to
use the results of the present paper.

(d) The concrete results of this paper on the embedding U ′
q(so3) ⊂ Uq(sl3) can be used

for studying q-orthogonal polynomials. Namely, it is known (see [15]) that zonal
spherical functions on the q-analogue of the quantum space SU(3)/SO(3) are expressed
in terms of symmetric Macdonald polynomials. The results of our paper allows us to
connect symmetric Macdonald polynomials with dual q-Krawtchouk polynomials and
dual q-Hahn polynomials. The results on this subject will be published in a separate
paper.

A shortcoming of the algebra U ′
q(so3) is that a Hopf algebra structure is not known on it.

Nevertheless, it is a coideal of Uq(sl3). Moreover, it is possible to construct tensor products
of finite-dimensional irreducible representations of U ′

q(so3) (usually, a Hopf algebra structure
is used for such a construction for Drinfeld–Jimbo quantum algebras). The details of such a
construction see [10].

The aim of this paper is to study the embedding U ′
q(so3) ⊂ Uq(sl3) with the subalgebra

U ′
q(so3) defined above. First, we restrict finite-dimensional irreducible representations

of Uq(sl3) to U ′
q(so3) and decompose these restrictions into irreducible representations

of U ′
q(so3). For this decomposition we diagonalize (by using the dual q-Krawtchouk

polynomials) the operators T (I21) of irreducible representations T of Uq(sl3). We show
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that this decomposition is the same as in the classical case SO(3) ⊂ SU(3). Then we
restrict ourselves only by irreducible representations T(l,0,0) of Uq(sl3) with highest weights
(l, 0, 0) and construct explicitly U ′

q(so3) bases in the spaces of these representations. In
order to construct them we use properties of dual q-Hahn polynomials. Products of dual q-
Krawtchouk polynomials and dual q-Hahn polynomials constitute coefficients of transition
from the Gel’fand–Tsetlin basis for the irreducible representation T(l,0,0) to the U ′

q(so3) basis.
Then we derive how operators of the representation T(l,0,0) of Uq(sl3) act upon the U ′

q(so3)

basis elements. In fact, we derive a formula of action of T(l,0,0) upon the last basis only for
the single operator T(l,0,0)(q2H3), for which the action formula is simplest. (Here q2H3 is the
element of the Cartan subalgebra defined at the end of section 2.) As in the classical case, the
corresponding formulae for other operators T(l,0,0)(a) with generating elements a of Uq(sl3)

can be found by commuting (or q-commuting) q2H3 with elements of U ′
q(so3). The action

formulae for the representation operators corresponding to the last elements are known.

2. The quantum algebra Uq(sl3) and its subalgebra U ′
q(so3)

The quantum algebra Uq(sl3) is generated by the elements e1, f1, e2, f2, k1 = qh1 , k2 = qh2

satisfying the relations

k1k2 = k2k1 kik
−1
i = k−1

i ki = 1 i = 1, 2

kiej k
−1
i = qaij ej kifj k

−1
i = q−aij fj [ei, fj ] = δij

ki − k−1
i

q − q−1

e2
i ei±1 − (q + q−1)eiei±1ei + ei±1e

2
i = 0

f 2
i fi±1 − (q + q−1)fifi±1fi + fi±1f

2
i = 0

where aii = 2 and a12 = a21 = −1 (see [18, 19]).
Let us take in Uq(sl3) the elements

I21 = f1 − qq−h1e1 I32 = f2 − qq−h2e2.

Direct calculation shows that these elements satisfy the relations

I 2
21I32 − (q + q−1)I21I32I21 + I32I

2
21 = −I32 (1)

I21I
2
32 − (q + q−1)I32I21I32 + I 2

32I21 = −I21. (2)

Introducing the element I31 = q1/2I21I32 − q−1/2I32I21, we obtain the quadratic relations for
I21, I32 and I31:

q1/2I21I32 − q−1/2I32I21 = I31 (3)

q1/2I31I21 − q−1/2I21I31 = I32 (4)

q1/2I32I31 − q−1/2I31I32 = I21 (5)

(the relations (4) and (5) are consequences of (1)–(3)). The associative algebra (with a unity)
generated by the elements I21 and I32 satisfying the relations (1) and (2) or, equivalently, the
associative algebra (with unit element) generated by I21, I32 and I31 satisfying the relations (3)–
(5) is denoted by U ′

q(so3). It is a q-deformation of the universal enveloping algebra U(so3)

of the Lie algebra so3 (for q = 1 the relations (3)–(5) turn into the well known commutation
relations for the basis elements of so3).
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Note that the relations (1) and (2) are a special case of the relations defining the non-
standard q-deformation U ′

q(son) of the universal enveloping algebra of the Lie algebra son
(see [20]). The relations (3)–(5) appeared in the paper by Fairlie [8].

Sometimes, it is useful to extend the embedding U ′
q(so3) ⊂ Uq(sl3) to the embedding

U ′
q(so3) ⊂ Uq(gl3). Instead of elements k1 = qh1 and k2 = qh2 , in Uq(gl3) we have the

elements qH1 , qH2 and qH3 such that qh1 = qH2q−H1 and qh2 = qH3q−H2 (for a complete
definition of Uq(gl3) see, for example, [7], chapter 6).

Throughout the rest of the paper we suppose that q is a real number such that 0 < q < 1.

3. Finite-dimensional representations of U ′
q(so3)

The algebra U ′
q(so3) has two types of irreducible finite-dimensional representations:

representations of the classical type and representations of the non-classical type (see [10]). As
in the case of the irreducible representations of the Lie algebra so3, irreducible representations
of the classical type are given by a non-negative integral or half-integral number r and are
denoted by T ′

r . The representation T ′
r acts on a (2r + 1)-dimensional vector space Vr . There

exists a basis |r, x〉, x = −r,−r + 1, . . . , r , in Vr such that the representation operators T ′
r (I21)

and T ′
r (I32) are given by the formulae

T ′
r (I21)|r, x〉 = i[x]|r, x〉 (6)

T ′
r (I32)|r, x〉 = [x]

[2x]
{([r − x][r + x + 1])1/2|r, x + 1〉 − ([r − x + 1][r + x])1/2|r, x − 1〉} (7)

where [a] ≡ [a]q means a q-number defined as

[a] = qa − q−a

q − q−1
.

Irreducible representations of non-classical type are given by a non-negative integer n and
by numbers ε1, ε2 taking the values 0 or 1. The corresponding representations are denoted
by Rnε1ε2 and act on an n-dimensional vector space Vn with the basis |1〉, |2〉, . . . , |n〉. The
operators Rnε1ε2(I21) and Rnε1ε2(I32) are given by the formulae

Rnε1ε2(I21)|k〉 = ε1
qk−1/2 + q−k+1/2

q − q−1
|k〉

Rnε1ε2(I32)|1〉 = ε2
[n]

q1/2 − q−1/2
|1〉 + i

[n − 1]

q1/2 − q−1/2
|2〉

Rnε1ε2(I32)|k〉 = i
qk[n − k]

qk−1/2 − q−k+1/2
|k + 1〉 + i

q−k+1[n + k − 1]

qk−1/2 − q−k+1/2
|k − 1〉

(8)

where k �= 1 in the last formula and i = √−1.
It follows from (6) and (8) that the spectra of the operators T ′

r (I21) and Rnε1ε2(I21) consist
of the points

i[x] x = −r,−r + 1, . . . , r (9)

and of the points

ε1
qk−1/2 + q−k+1/2

q − q−1
k = 1, 2, . . . , n (10)
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respectively. Thus, for positive q the spectrum of the representation operator T (I21) consists
of pure imaginary points for irreducible representations of the classical type and of real points
for irreducible representations of the non-classical type.

We need below the following assertion: every finite-dimensional irreducible
representation of U ′

q(so3) is equivalent to one of the representations T ′
r of classical type or to

one of the representations Rnε1ε2 of non-classical type. This assertion is given in [9] for the
algebra isomorphic to U ′

q(so3).
Taking into account this assertion, we derive from formulae (9) and (10) that a finite-

dimensional irreducible representation T of U ′
q(so3) is uniquely (up to an equivalence)

determined by the spectrum of the operator T (I21).

4. Representations of the quantum algebra Uq(sl3)

We consider irreducible finite-dimensional representations T# of the quantum algebra Uq(sl3)

given by integers # ≡ (l1, l2, l3) such that l1 � l2 � l3. The representation T# acts on the
vector space V# with the Gel’fand–Tsetlin basis

|m1,m2;m〉 l1 � m1 � l2 � m2 � l3 m1 � m � m2.

The operators of this representation act on these basis vectors as

T#(q
h1)|m1,m2;m〉 = q2m−m1−m2 |m1,m2;m〉 (11)

T#(q
h2)|m1,m2;m〉 = q2m1+2m2−l1−l2−l3−m|m1,m2;m〉 (12)

T#(e1)|m1,m2;m〉 = ([m1 − m][m − m2 + 1])1/2|m1,m2;m + 1〉
T#(f1)|m1,m2;m〉 = ([m1 − m + 1][m − m2])1/2|m1,m2;m − 1〉

(the operators T#(e2) and T#(f2) will be given below). In the next section we shall need the
basis |m1,m2;m〉′ of the space V# given by

|m1,m2;m〉′ = q(m1−m)(m−m2)/2|m1,m2;m〉.

The operators T#(qh1) and T#(q
h2) act upon this new basis by the same formulae as upon the

previous basis, that is by the formulae (11) and (12). For T#(e1) and T#(f1) we have

T#(e1)|m1,m2;m〉′ = q(2m−m1−m2+1)/2([m1 − m][m − m2 + 1])1/2|m1,m2;m + 1〉′

T#(f1)|m1,m2;m〉′ = q(−2m+m1+m2+1)/2([m1 − m + 1][m − m2])1/2|m1,m2;m − 1〉′.
The representation T# can be extended to the representation of the quantum algebra Uq(gl3)

(we denote this extended representation by the same symbol T#). For this extension we have

T#(q
H1)|m1,m2;m〉′ = q−m|m1,m2;m〉′

T#(q
H2)|m1,m2;m〉′ = qm−m1−m2 |m1,m2;m〉′

T#(q
H3)|m1,m2;m〉′ = qm1+m2−l1−l2−l3 |m1,m2;m〉′.

We shall need these formulae in section 8.
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5. Restriction of the representations of Uq(sl3) to U ′
q(so3)

The aim of this section is to restrict the irreducible representation T#, # = (l1, l2, l3), of Uq(sl3)

to the subalgebra U ′
q(so3) and to decompose this restriction into irreducible representations of

U ′
q(so3). In order to do this we consider the representation T# for elements of U ′

q(so3). We
have

T#(I21)|m1,m2;m〉′ = (T#(f1) − qT#(q
−h1)T#(e1))|m1,m2;m〉′

= q(m1+m2−2m+1)/2([m1 − m + 1][m − m2])1/2|m1,m2;m − 1〉′

−q(m1+m2−2m−1)/2([m1 − m][m − m2 + 1])1/2|m1,m2;m + 1〉′. (13)

Let us diagonalize this operator. This means that we have to find in the space V# the vectors

|m1,m2; x〉′ =
m1∑

m=m2

axm|m1,m2;m〉′ (14)

such that

T#(I21)|m1,m2; x〉′ = i[x]|m1,m2; x〉′ (15)

where i = √−1 and [x] is a q-number. We have to find eigenvalues i[x]. (Note that
representing these eigenvalues in the form i[x] we do not restrict ourselves since for a fixed
positive q the number x may take any complex number.) In order to find eigenvalues in (15)
we act by the operator T#(I21) upon both sides of (14):

i[x]|m1,m2; x〉′ =
m1∑

m=m2

axmT#(I21)|m1,m2;m〉′.

We substitute into the right-hand side of this relation the expression (13) for the vectors
T#(I21)|m1,m2;m〉′ and into the left-hand side the expression (14) for the vector |m1,m2; x〉′.
Then we compare coefficients at the vector |m1,m2;m〉′. As a result, we obtain a recurrence
relation for computation of the coefficients axm:

axm+1q
−1/2d

√
[m1 − m][m − m2 + 1] − axm−1q

1/2d
√

[m1 − m + 1][m − m2]) = i[x]axm (16)

where d = q(m1+m2−2m)/2. Using the notation

N = m1 − m2 n = m − m2 Pn(x) = axn+m2

we obtain

q(N−2n−1)/2{
√

[N − n][n + 1]Pn+1(x) − q
√

[N − n + 1][n]Pn−1(x)} = i[x]Pn(x).

Making here the substitution

Pn(x) = i−n

(
[N ]!

[n]![N − n]!

)1/2

q−n(N−1)/2P ′
n(x)

where [n]! = [n][n − 1][n − 2] · · · [1], we obtain the recurrence relation

(1 − q ′n−N
)P ′

n+1(x) − q ′−N
(1 − q ′n)P ′

n−1(x) = q ′−N/2
(q ′−x/2 − q ′x/2

)P ′
n(x)

where q ′ = q−2. We compare this relation with the recurrence relation (see [21])

cq̂(q̂n − 1)kn−1(λ(y)) + (q̂−N − cq̂)q̂nkn(λ(y)) + (1 − q̂n−N)kn+1(λ(y))

= (q̂−y − cq̂y+1)kn(λ(y))
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for the dual q-Krawtchouk polynomials

kn(λ(y); c,N | q̂) = 3ϕ2(q̂
−y,−cq̂y+1, q̂−n; 0, q̂−N ; q̂, q̂)

with λ(y) = q̂−y − cq̂y+1, where 3ϕ2 is a basic hypergeometric function (see [22] or [23],
section 13.2.2). Then at q̂ = q ′ = q−2, c = q ′−N−1 = q2N+2 and x = 2y − N we obtain

Pn(x) = i−n

(
[N ]!

[n]![N − n]!

)1/2

q−n(N−1)/2kn(λ(y)); q2N+2, N | q−2)

where λ(y)) = qx+N − q−x+N . Therefore,

axm = Pm−m2(x) = im2−mq−(m−m2)(m1−m2−1)/2

(
[m1 − m2]!

[m − m2]![m1 − m]!

)1/2

× 3ϕ2(q
x+m1−m2 ,−qx+m2−m1 , q2(m−m2); 0, q2(m1−m2); q−2, q−2)

wherem runs over the valuesm2,m2+1, . . . , m1, that is, n = m−m2 runs over 0, 1, 2, . . . , N =
m1 − m2.

The dual q-Krawtchouk polynomials are orthogonal on the set y = 0, 1, 2, . . . , N (see
[21]). This means that the rows and columns of the (N + 1)× (N + 1) matrix a with entries axm
are orthogonal to each other, and we obtain the vectors |m1,m2; x〉′ for the following values
of x = 2y − N :

x ∈ {−N,−N + 2, . . . , N} ≡ {−(m1 − m2),−(m1 − m2) + 2, . . . , m1 − m2}
(since x runs over these values when y runs over the values 0, 1, 2, . . . , N). Therefore, for
each fixed m1 and m2 we obtain the spectral points

−i[m1 − m2], −i[m1 − m2 − 2], . . . , i[m1 − m2] (17)

of the operator T#(I21). The whole spectrum of this operator in the representation T# consists
of the family of sets (17) (we denote these sets by S(m1,m2)) taken for all integral values m1

and m2 such that l1 � m1 � l2 � m2 � l3, that is,

Spec T#(I21) =
⋃

l1�m1�l2�m2�l3

S(m1,m2).

Thus, the spectrum of T#(I21) consists only of purely imaginary points. Comparing this
spectrum with the spectra of operators T (I21) of irreducible representations T of U ′

q(so3)

given in section 3 we conclude that the restriction T#↓U ′
q (so3)

decomposes only into irreducible
representations of the classical type (since only they give purely imaginary points in the
spectra).

In order to find which irreducible representations of U ′
q(so3) are contained in the

decomposition of T#↓U ′
q (so3)

we have to split the spectrum Spec T#(I21) into spectra of operators
T (I21) of irreducible representations T of U ′

q(so3). In order to do this we note that the set
S(m1,m2) is not a spectrum of some irreducible representation of U ′

q(so3). We have

S(m1,m2)
⋃

S(m1 − 1,m2) = Spec T ′
m1−m2

(I21) (18)

whereT ′
m1−m2

is the irreducible representation ofU ′
q(so3) from section 3. Splitting Spec T#(I21)

into parts of type (18) we conclude that

T#↓U ′
q (so3)

=
∑
s

′ s+l2−l3∑
k=s

T ′
k (19)
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if l1 − l2 is odd and

T#↓U ′
q (so3)

=
∑
s

′ s+l2−l3∑
k=s

T ′
k ⊕

∑
r

′
T ′
r (20)

if l1 − l2 is even, where
∑′

s denotes summation over the values l1 − l2, l1 − l2 − 2, l1 − l2 −
4, . . . , 1 (or 2) and the last sum

∑′
r is over the values l2−l3, l2−l3−2, l2−l3−4, . . . , 0 (or 1).

The decompositions (19) and (20) are direct sum decompositions since T# ↓U ′
q (so3) is a

completely reducible representation (see [16]). Note that the decompositions (19) and (20)
coincide with the corresponding decompositions for the reduction SU(3) ⊃ SO(3) (see, for
example, [24]).

The orthogonality relation for the coefficients axm from (14) follows from the orthogonality
for the dual q-Krawtchouk polynomials which can be found in [21]. Using the last
orthogonality we find that

m1−m2∑
x=−(m1−m2)

axma
x
nW(x) = δmn (21)

where the summation is with step 2 and

W(x) = q(x2−m1+m2)/2 [2x][m1 − m2]!

2[x][m1 − m2 + x]!![m1 − m2 − x]!!
(22)

with [m]!! = [m][m − 2][m − 4] · · · [0] (or [1]).
Formula (21) shows that the vectors (14) are not normalized. The vectors

|m1,m2 x〉′′ = W(x)1/2|m1,m2 x〉′ (23)

are normal and T#(I2,1)|m1,m2 x〉′′ = i[x]|m1,m2 x〉′′.

6. The action formula for the operator T�(I32)

Below we consider the irreducible representations of Uq(sl3) only with highest weights
(l, 0, 0). We denote these representations by Tl,0. We derive from (19) and (20) that

Tl,0↓U ′
q (so3)

= T ′
l ⊕ T ′

l−2 ⊕ T ′
l−4 ⊕ · · · ⊕ T ′

0 (or T ′
1).

Let us find how the operator Tl,0(I32) acts upon the basis elements |m1, 0; x〉′′ ≡ |m1; x〉′′
given by (23). Since

Tl,0(e2)|m1; m〉′ = q−m/2([l − m1][m1 − m + 1])1/2|m1 + 1; m〉′
Tl,0(f2)|m1; m〉′ = qm/2([l − m1 + 1][m1 − m])1/2|m1 − 1; m〉′
Tl,0(q

h2)|m1; m〉′ = q2m1−l−m|m1; m〉′
where the vectors |m1, 0; m〉′ are denoted by |m1; m〉′, then

Tl,0(I32)|m1; m〉′ = qm/2{([l − m1 + 1][m1 − m])1/2|m1 − 1; m〉′
−ql−2m1−1([l − m1][m1 − m + 1])1/2|m1 + 1; m〉′}.

Therefore, using relation (14) we have

Tl,0(I32)|m1; x〉′′ =
m1∑
m=0

cxm(m1)q
m/2

√
[l − m1 + 1][m1 − m]|m1 − 1; m〉′

−
m1∑
m=0

cxm(m1)q
l−2m1−1+m/2

√
[l − m1][m1 − m + 1]|m1 + 1; m〉′ (24)
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where |m1; x〉′′ ≡ |m1, 0; x〉′′, cxm(m1) = W(x)−1/2axm and W(x) is given by formula (22) at
m2 = 0. We have to express the sums on the right-hand side as linear combinations of vectors
of the type |m1; x〉′′. (Note that it follows from the results of section 5 that m1 and x are of
the same evenness.) For this we need the relation

(α − a)(1 − f ) 3ϕ2(α, a, b; d, f ; q̂, z) = (α − f )(1 − a) 3ϕ2(α, aq̂, b; d, f q̂; q̂, z)

+(1 − α)(f − a) 3ϕ2(αq̂, a, b; d, f q̂; q̂, z) (25)

which is proved by a direct calculation by comparing coefficients at zn. Using this formula at

q̂ = q−2 b = q2m d = 0 f = q2m1

α = qx+m1 a = −qm1−x z = q−2

and the expression for cxm(m1) in terms of the q-hypergeometric function 3ϕ2 we obtain the
following recurrence relation for the coefficients cxm(m1):

cxm(m1) =
(

[x]

[2x][m1 − m]

)1/2
{
q(x−m−1)/2

(
[m1 + x][x − 1]

[2x − 2]

)1/2

cx−1
m (m1 − 1)

+q−(x+m+1)/2

(
[m1 − x][x + 1]

[2x + 2]

)1/2

cx+1
m (m1 − 1)

}
. (26)

Next we need the relation

3ϕ2(q̂
−n, a, b; d, f ; q̂, q̂) = (1 − d/b)(1 − q̂/f )

(1 − a/b)(1 − q̂1−n/f )
3ϕ2(q̂

−n, a, bq̂−1; d, f q̂−1; q̂, q̂)

+
(1 − d/a)(1 − q̂/f )

(1 − b/a)(1 − q̂1−n/f )
3ϕ2(q̂

−n, aq̂−1, b; d, f q̂−1; q̂, q̂). (27)

This formula is proved in the following way. By comparing coefficients at zn the following
relation is proved:

(α − A) 3ϕ2(α,A,B; d,E; q̂, z) = α(1 − A) 3ϕ2(α,Aq̂, B; d,E; q̂, z)

−A(1 − α) 3ϕ2(αq̂, A,B; d,E; q̂, z).

Then we set z = q̂, B = q̂−n and apply to every 3ϕ2 the symmetry relation (3.2.3) from [15].
Using the renotation α = d/a, A = d/b and E = df/ab, we obtain relation (27).

Using relation (27) at q̂ = q−2, f = q2m1 , a = qx+m1 and B = −qm1−x we derive

cxm(m1) =
(

[x]

[2x][m1 − m + 1]

)1/2
{
q−(x+m)/2

(
[m1 − x + 2][x − 1]

[2x − 2]

)1/2

cx−1
m (m1 + 1)

+q(x−m)/2

(
[m1 + x + 2][x + 1]

[2x + 2]

)1/2

cx+1
m (m1 + 1)

}
. (28)

We substitute expression (26) for cxm(m1) into the first sum in (24) and expression (28) into the
second sum in (24), and then use formulae (14) and (23) with m2 = 0 and with m1 replaced by
m1 − 1 for the first sum and by m1 + 1 for the second sum. As a result, after some calculation
we derive

Tl,0(I32)|m1; x〉 = −A(x)B(x,m1)|m1 + 1; x + 1〉 − A(−x)B(−x,m1)|m1 + 1; x − 1〉
+A(x)B(−x − 1,m1 − 1)|m1 − 1; x + 1〉
+A(−x)B(x − 1,m1 − 1)|m1 − 1; x − 1〉 (29)
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where |m1; x〉 = q−m1(m1−l)/2|m1; x〉′′ and

A(x) =
(

[x][x + 1]

[2x][2x + 2]

)1/2

B(x,m1) = q(l−2m1+x−1)/2([l − m1][m1 + x + 2])1/2.

This formula will be used below.

7. The U ′
q(so3) bases of Uq(sl3) representation spaces

In this section we find the basis of the vector space Vl,0 of the representation Tl,0 of the algebra
Uq(sl3) for which the operators Tl,0(I21) and Tl,0(I32) are of the form (6) and (7), respectively.
Let

|m1; x〉 =
∑
r

bm1
r (x)|r, x〉′ (30)

where |m1; x〉 are the basis elements from (29) and |r, x〉′ are basis elements which must be
found, that is,

Tl,0(I32)|r, x〉′ = [x]

[2x]
([r − x][r + x + 1])1/2|r, x + 1〉′

− [x]

[2x]
([r − x + 1][r + x])1/2|r, x − 1〉′

and Tl,0(I21)|r, x〉′ = i[x]|r, x〉′. Then

Tl,0(I32)|m1; x〉 =
∑
r

bm1
r (x)Tl,0(I32)|r, x〉′. (31)

Substituting here the expression (29) for Tl,0(I32)|m1; x〉 and comparing coefficients at the
vector |r, x + 1〉′ and then at the vector |r, x − 1〉′ we obtain the relations

C
m1−1
x+1 bm1−1

r (x + 1) − A
m1+1
x+1 bm1+1

r (x + 1) = bm1
r (x)

[x]

[2x]
([r − x][r + x + 1])1/2 (32)

D
m1−1
x−1 bm1−1

r (x − 1) − B
m1+1
x−1 bm1+1

r (x − 1) = −bm1
r (x)

[x]

[2x]
([r − x + 1][r + x])1/2 (33)

where

A
m1+1
x+1 = A(x)B(x,m1) B

m1+1
x−1 = A(−x)B(−x,m1)

C
m1−1
x+1 = A(x)B(−x − 1,m1 − 1) D

m1−1
x−1 = A(−x)B(x − 1,m1 − 1).

We have from (33) that

bm1
r (x) = [2x]

[x]
([r − x + 1][r + x])−1/2(B

m1+1
x−1 bm1+1

r (x − 1) − D
m1−1
x−1 bm1−1

r (x − 1)).

Substituting this expression with (m1, x) replaced by (m1 −1, x+1) and then by (m1 +1, x+1)
into (32), we obtain the recurrence relation for bm1

r (x) with fixed r and x:

A
m1+1
x+1 Bm1+2

x bm1+2
r (x) − (A

m1+1
x+1 Dm1

x + C
m1−1
x+1 Bm1

x )bm1
r (x)

+Cm1−1
x+1 Dm1−2

x bm1−2
r (x) = − [x][x + 1]

[2x][2x + 2]
[r − x][r + x + 1]bm1

r (x).

Introducing the notation

N = (l − x)/2 n = (m1 − x)/2 bm1
r (x) ≡ b2n+x

r (x) = MPx
n (r)
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where

M = qn(x+3/2)

(
[2n + 2x]!![2N − 2n − 1]!![2N ]!!

[2n]!![2N − 2n]!![2x]!![2N − 1]!!

)1/2

and using the explicit expressions for the coefficients A, B, C and D after some calculation
we derive

AnP
x
n+1(r) + CnP

x
n−1(r) − (An + Cn)P

x
n (r) = −(1 − q2(r−x))(1 − q−2(r+x+1))P x

n (r) (34)

where

An = (1 − q−4(n−N))(1 − q−4(n+x+1))

Cn = q−2(2x+1)(1 − q−4n)(1 − q−4(n−N−1/2)).

We compare this relation with the recurrence relation

AnRn+1(µ(y)) − (An + Cn)Rn(µ(y)) + CnRn−1(µ(y)) = −(1 − q̂−y)(1 − γ δq̂y+1)Rn(µ(y))

(35)

with

An = (1 − q̂n−N)(1 − γ q̂n+1) Cn = γ q̂(1 − q̂n)(δ − q̂n−N−1)

for dual q-Hahn polynomials

Rn(µ(y)); γ, δ,N | q̂) = 3ϕ2(q̂
−n, q̂−y, γ δq̂y+1; γ q̂, q̂−N ; q̂, q̂)

where µ(y) = q̂−y + γ δq̂y+1 (see [22]).
The relation (34) coincides with the recurrence relation (35) if we set

γ = q−4x δ = q2 y = (r − x)/2

and consider that l, x and r are of the same evenness. (Note that m1 and x are of the same
evenness as shown in section 5.) Therefore,

P x
n (r) = Rn(µ(y); q−4x, q2, N | q−4)

= 3ϕ2(q
4n, q2r−2x, q−2(x+r+1); q−4x−4, q4N ; q−4, q−4).

Since MPx
n (r) = bm1

r (x), then for coefficients bm1
r (x) from (30) we have

bm1
r (x) = qn(x+3/2)

(
[2n + 2x]!![2N − 2n − 1]!![2N ]!!

[2n]!![2N − 2n]!![2x]!![2N − 1]!!

)1/2

Rn(µ(y); q−4x, q2, N | q−4)

(36)

where N = 1
2 (l − x), n = 1

2 (m1 − x) and µ(y) = q2(r−x) + q−2(x+r+1).
The orthogonality relation for the coefficients bm1

r (x) follows from the orthogonality for
the dual q-Hahn polynomials which can be found in [22]. From the last orthogonality we
derive that ∑

r

bm1
r (x)b

m′
1

r (x)W ′(r) = δm1m
′
1

(37)

where summation is over r = x, x + 2, x + 4, . . . , l and

W ′(r) = q
1
2 (r−x)(r+x+1)−(l−x)(x+1)[l − x]![r + x]![2r + 1]

[r − x]![l + r + 1]!![l − r]!![2x]!!
.
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Formula (37) means that the vectors |r, x〉′ from (30) are not normalized. The vectors

|r, x〉 = W ′(r)−1/2|r, x〉′
are normalized. This normalization does not change the formula for the operator Tl,0(I32). We
have

|r, x〉 =
∑
m1

bm1
r (x)W(r)1/2|m1; x〉 |m1; x〉 =

∑
r

bm1
r (x)W(r)1/2|r, x〉.

In formula (36), m1 and r are of the same evenness. If m1 and r are of different evenness,
then we can calculate bm1

r (x) by means of the formula

bm1
r (x) = q(l−2m1)/2

(
[2x][x − 1]q−x

[x][2x − 2][r + x][r − x + 1]

)1/2

×(
q−1/2

√
[l − m1][m1 − x + 2] bm1+1

r (x − 1)

−qx
√

[m1 + x][l − m1 + 1]bm1−1
r (x − 1)

)
or by the formula

bm1
r (x) = −q(x−l)/2

(
[r − x + 1][x − 1][r + x][m1 + x]

[x][2x − 2][2x][l − m1 + 1]

)1/2

bm1−1
r (x − 1)

−q−(l+x)/2

(
[x + 1][r − x][r + x + 1][m1 − x]

[2x + 2][2x][x][l − m1 + 1]

)
bm1−1
r (x + 1).

These formulae are derived from (32) and (33). They express the coefficients bm1
r (x) with

different evenness of m1 and r in terms of the coefficients with the same evenness of m1 and r .

8. Representations of Uq(sl3) in the U ′
q(so3) basis

Now we wish to obtain formulae showing how operators of the representation Tl,0 of the
algebra Uq(sl3) act upon the basis |r, x〉 derived in the previous section. It is enough to derive
such a formula only for the operator Tl,0(q2H3) corresponding to the element q2H3 ∈ Uq(gl3)

(see section 2). The formulae for other operators can be obtained by commuting the operator
Tl,0(q

2H3) with the operators corresponding to elements of the subalgebra U ′
q(so3). Since

Tl,0(q
H3)|m1; m〉 = qm1−l|m1; m〉 (see section 4), then

Tl,0(q
2H3)|m1; x〉 = q2m1−2l|m1; x〉.

We have

Tl,0(q
2H3)|r, x〉 = Tl,0(q

2H3)
∑
m1

W(r)1/2bm1
r (x)|m1; x〉

=
∑
m1

q2m1−2l b̂m1
r (x)|m1; x〉 (38)

where b̂m1
r (x) = W(r)1/2bm1

r (x). Using the difference equation

(q̂−n − 1)Rn(µ(y)) = B(y)Rn(µ(y + 1)) − (B(y) + D(y))Rn(µ(y)) + D(y)Rn(µ(y − 1))

for the dual q-Hahn polynomials Rn(µ(y); γ, δ,N | q̂), where

B(y) = (1 − q̂y−N)(1 − γ q̂y+1)(1 − γ δq̂y+1)

(1 − γ δq̂2y+1)(1 − γ δq̂2y+2)

D(y) = −γ q̂y−N(1 − q̂y)(1 − γ δq̂y+N+1)(1 − δq̂y)

(1 − γ δq̂2y)(1 − γ δq̂2y+1)
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(see [22]), we derive from the expression for b̂m1
r (x) in terms of these polynomials the following

recurrence relation for b̂m1
r (x):

q−2(l−m1)b̂m1
r (x) = −B̂(r)b̂

m1
r+2(x) − B̂(r − 2)b̂m1

r−2(x) + Ĉ(r)b̂m1
r (x) (39)

where

B̂(r) = q − q−1

q(2l+1)/2

(
[l − r][l + r + 3][r − x + 1][r − x + 2][r + x + 1]

[2r + 1][2r + 5][2r + 3]2[r + x + 2]−1

)1/2

Ĉ(r) = q−l(q − q−1)

[2r + 3]

(
qr+1[l − r][r + x + 1]

[2r + 1][r + x + 2]−1
+

q−r [r − x][r + l + 1]

[2r − 1][r − x − 1]−1

)
+ q2x−2l .

We substitute the expression (39) for b̂m1
r (x) into (38) and find on the right-hand side the

expressions for the vectors |r + 2, x〉, |r −2, x〉 and |r, x〉 in terms of the vectors |m1; x〉. This
turns (38) into the formula

Tl,0(q
2H3)|r, x〉 = −B̂(r)|r + 2, x〉 − B̂(r − 2)|r − 2, x〉 + Ĉ(r)|r, x〉 (40)

where B̂(r) and Ĉ(r) are such as in (39). This is the desired formula for the operator Tl,0(q2H3).
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