The embedding $U_{q}\left(\mathrm{SO}_{3}\right) \subset U_{q}\left(\mathrm{Sl}_{3}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34793
(http://iopscience.iop.org/0305-4470/34/4/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:19

Please note that terms and conditions apply.

The embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$

I I Kachurik and A U Klimyk
Institute for Theoretical Physics, Kiev 03143, Ukraine

Received 13 July 2000, in final form 26 October 2000

Abstract

We study the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$, where $U_{q}\left(s l_{3}\right)$ is a well known Drinfeld-Jimbo quantum algebra and the algebra $U_{q}^{\prime}\left(s o_{3}\right)$ is the cyclically symmetric q-deformation of the universal enveloping algebra $U\left(s o_{3}\right)$ of the Lie algebra SO_{3} which is not a Drinfeld-Jimbo quantum algebra. Finite-dimensional irreducible representations of $U_{q}\left(s l_{3}\right)$ are decomposed into irreducible representations of $U_{q}^{\prime}\left(s o_{3}\right)$. An explicit expression for the matrix of the transition from the Gel'fand-Tsetlin basis for $U_{q}\left(s l_{3}\right)$ to the bases of irreducible representations of $U_{q}^{\prime}\left(s o_{3}\right)$ is calculated for representations of $U_{q}\left(s l_{3}\right)$ with highest weights $(l, 0,0)$. Entries of this matrix are expressed in terms of products of dual q-Krawtchouk polynomials and dual q-Hahn polynomials. Expressions for representation operators of $U_{q}\left(s l_{3}\right)$ in the $U_{q}^{\prime}\left(s o_{3}\right)$ basis are given.

PACS numbers: 0220S, 0220U, 0230G

1. Introduction

The embedding $S O(3) \subset S U(3)$ is of a great importance for physics [1-3]. On the Lie algebra level, this embedding is fulfilled by choosing the elements $E_{12}-E_{21}, E_{13}-E_{31}$, $E_{23}-E_{32}$ of the Lie algebra su_{3} as a basis for the Lie subalgebra $s o_{3}$, where $E_{i j}$ are the matrices with entries $\left(E_{i j}\right)_{r s}=\delta_{i r} \delta_{j s}$. The embedding $S O(3) \subset S U(3)$ differs essentially from the embedding $S U(2) \subset S U(3)$.

After the appearance of quantum groups and quantum algebras, much attention was paid to the construction of q-analogues of the embedding $S O(3) \subset S U(3)$ (see, for example, [46] and references therein). It is clear now that it is not possible to construct an embedding $U_{q}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ in such a way that $U_{q}\left(s l_{3}\right)$ and $U_{q}\left(s o_{3}\right)$ would be a Hopf algebra and its Hopf subalgebra, respectively (see [7], chapter 1, for the corresponding definitions). In constructing an embedding $U_{q}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ one usually tries to take the standard DrinfeldJimbo algebra $U_{q}\left(s l_{2}\right)$ (or an algebra isomorphic to it) as the subalgebra $U_{q}\left(s o_{3}\right)$.

Our idea in this paper is the following. If we wish to construct a q-deformation of the embedding $\mathrm{So}_{3} \subset s l_{3}$, then we have to make a q-deformation of the commutation relations for the basis $I_{21}^{\prime} \equiv E_{12}-E_{21}, I_{31}^{\prime} \equiv E_{13}-E_{31}, I_{32}^{\prime} \equiv E_{23}-E_{32}$ of the subalgebra o_{3}. It is possible to construct such a q-deformation. The role of $U_{q}\left(s o_{3}\right)$ in this q-deformed embedding
$U_{q}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ is the cyclically symmetric algebra generated by the elements I_{21}, I_{31}, I_{32}, satisfying the relations

$$
\left[I_{21}, I_{32}\right]_{q}=I_{31} \quad\left[I_{32}, I_{31}\right]_{q}=I_{21} \quad\left[I_{31}, I_{21}\right]_{q}=I_{32}
$$

where the q-commutator $[A, B]_{q}$ is defined by $[A, B]_{q}=q^{1 / 2} A B-q^{-1 / 2} B A$. This algebra (we denote it by $U_{q}^{\prime}\left(s o_{3}\right)$) was introduced by Fairlie [8]. It is isomorphic to the algebra studied by Odesski [9]. It was shown in [10] that $U_{q}^{\prime}\left(s o_{3}\right)$ is not isomorphic to the quantum algebra $U_{q}\left(s l_{2}\right)$ and can be embedded into a certain extension of $U_{q}\left(s l_{2}\right)$.

The elements I_{21}, I_{31}, I_{32} of $U_{q}^{\prime}\left(s o_{3}\right)$ are q-deformations of the elements $E_{12}-E_{21}$, $E_{13}-E_{31}, E_{23}-E_{32}$ of the subalgebra s_{3} of $s l_{3}$ and at $q \rightarrow 1$ they turn into these elements of $s o_{3}$. This means that $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ is a natural q-deformation of the embedding $s o_{3} \subset s l_{3}$ and may be important for construction of q-deformations of the 'classical' models in nuclear physics. Some other motivations for studying the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ are the following.
(a) The algebra $U_{q}^{\prime}\left(s o_{3}\right)$ arises naturally as the algebra of observables in $2+1$ quantum gravity on the torus (see, for example, [11]). This algebra appears in [12] in the study of geometry on Teichmüller spaces. It also appears in the theory of links in the algebraic topology [13]. The embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ allows us to use the algebra $U_{q}\left(s l_{3}\right)$ for studying properties of $U_{q}^{\prime}\left(s o_{3}\right)$. For example, using this embedding it is shown in [14] that $U_{q}^{\prime}\left(s o_{3}\right)$ has no divisors of zero and that finite-dimensional representations of the algebra $U_{q}^{\prime}\left(s o_{3}\right)$ separate its elements.
(b) The embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ is also used for the construction of a quantum analogue of the symmetric Riemannian space $S U(3) / S O(3)$ (see [15]). For studying harmonic analysis on this quantum symmetric space we need to know the relationship between finite-dimensional representations of $U_{q}^{\prime}\left(s o_{3}\right)$ and $U_{q}\left(s l_{3}\right)$. We study this relationship in the present paper.
(c) A q-analogue of the theory of harmonic polynomials (q-harmonic polynomials) on the three-dimensional quantum vector space \mathbb{R}_{q}^{3} is constructed by using the algebra $U_{q}\left(s l_{3}\right)$ and its subalgebra $U_{q}^{\prime}\left(s o_{3}\right)$. (This theory is contained in $[16,17]$.) If we wish to know how elements of the algebra $U_{q}\left(s l_{3}\right)$ act upon basis q-harmonic polynomials, we have to use the results of the present paper.
(d) The concrete results of this paper on the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ can be used for studying q-orthogonal polynomials. Namely, it is known (see [15]) that zonal spherical functions on the q-analogue of the quantum space $S U(3) / S O(3)$ are expressed in terms of symmetric Macdonald polynomials. The results of our paper allows us to connect symmetric Macdonald polynomials with dual q-Krawtchouk polynomials and dual q-Hahn polynomials. The results on this subject will be published in a separate paper.

A shortcoming of the algebra $U_{q}^{\prime}\left(s o_{3}\right)$ is that a Hopf algebra structure is not known on it. Nevertheless, it is a coideal of $U_{q}\left(s l_{3}\right)$. Moreover, it is possible to construct tensor products of finite-dimensional irreducible representations of $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$ (usually, a Hopf algebra structure is used for such a construction for Drinfeld-Jimbo quantum algebras). The details of such a construction see [10].

The aim of this paper is to study the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ with the subalgebra $U_{q}^{\prime}\left(s o_{3}\right)$ defined above. First, we restrict finite-dimensional irreducible representations of $U_{q}\left(s l_{3}\right)$ to $U_{q}^{\prime}\left(s o_{3}\right)$ and decompose these restrictions into irreducible representations of $U_{q}^{\prime}\left(s o_{3}\right)$. For this decomposition we diagonalize (by using the dual q-Krawtchouk polynomials) the operators $T\left(I_{21}\right)$ of irreducible representations T of $U_{q}\left(s l_{3}\right)$. We show
that this decomposition is the same as in the classical case $S O(3) \subset S U(3)$. Then we restrict ourselves only by irreducible representations $T_{(l, 0,0)}$ of $U_{q}\left(s l_{3}\right)$ with highest weights $(l, 0,0)$ and construct explicitly $U_{q}^{\prime}\left(s o_{3}\right)$ bases in the spaces of these representations. In order to construct them we use properties of dual q-Hahn polynomials. Products of dual q Krawtchouk polynomials and dual q-Hahn polynomials constitute coefficients of transition from the Gel'fand-Tsetlin basis for the irreducible representation $T_{(l, 0,0)}$ to the $U_{q}^{\prime}\left(s o_{3}\right)$ basis. Then we derive how operators of the representation $T_{(l, 0,0)}$ of $U_{q}\left(s l_{3}\right)$ act upon the $U_{q}^{\prime}\left(s o_{3}\right)$ basis elements. In fact, we derive a formula of action of $T_{(l, 0,0)}$ upon the last basis only for the single operator $T_{(l, 0,0)}\left(q^{2 H_{3}}\right)$, for which the action formula is simplest. (Here $q^{2 H_{3}}$ is the element of the Cartan subalgebra defined at the end of section 2.) As in the classical case, the corresponding formulae for other operators $T_{(l, 0,0)}(a)$ with generating elements a of $U_{q}\left(s l_{3}\right)$ can be found by commuting (or q-commuting) $q^{2 H_{3}}$ with elements of $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$. The action formulae for the representation operators corresponding to the last elements are known.

2. The quantum algebra $U_{q}\left(s l_{3}\right)$ and its subalgebra $U_{q}^{\prime}\left(s o_{3}\right)$

The quantum algebra $U_{q}\left(s l_{3}\right)$ is generated by the elements $e_{1}, f_{1}, e_{2}, f_{2}, k_{1}=q^{h_{1}}, k_{2}=q^{h_{2}}$ satisfying the relations

$$
\begin{aligned}
& k_{1} k_{2}=k_{2} k_{1} \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1 \quad i=1,2 \\
& k_{i} e_{j} k_{i}^{-1}=q^{a_{i j}} e_{j} \quad k_{i} f_{j} k_{i}^{-1}=q^{-a_{i j}} f_{j} \quad\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q-q^{-1}} \\
& e_{i}^{2} e_{i \pm 1}-\left(q+q^{-1}\right) e_{i} e_{i \pm 1} e_{i}+e_{i \pm 1} e_{i}^{2}=0 \\
& f_{i}^{2} f_{i \pm 1}-\left(q+q^{-1}\right) f_{i} f_{i \pm 1} f_{i}+f_{i \pm 1} f_{i}^{2}=0
\end{aligned}
$$

where $a_{i i}=2$ and $a_{12}=a_{21}=-1$ (see $[18,19]$).
Let us take in $U_{q}\left(s l_{3}\right)$ the elements

$$
I_{21}=f_{1}-q q^{-h_{1}} e_{1} \quad I_{32}=f_{2}-q q^{-h_{2}} e_{2}
$$

Direct calculation shows that these elements satisfy the relations

$$
\begin{align*}
& I_{21}^{2} I_{32}-\left(q+q^{-1}\right) I_{21} I_{32} I_{21}+I_{32} I_{21}^{2}=-I_{32} \tag{1}\\
& I_{21} I_{32}^{2}-\left(q+q^{-1}\right) I_{32} I_{21} I_{32}+I_{32}^{2} I_{21}=-I_{21} \tag{2}
\end{align*}
$$

Introducing the element $I_{31}=q^{1 / 2} I_{21} I_{32}-q^{-1 / 2} I_{32} I_{21}$, we obtain the quadratic relations for I_{21}, I_{32} and I_{31} :

$$
\begin{align*}
& q^{1 / 2} I_{21} I_{32}-q^{-1 / 2} I_{32} I_{21}=I_{31} \tag{3}\\
& q^{1 / 2} I_{31} I_{21}-q^{-1 / 2} I_{21} I_{31}=I_{32} \tag{4}\\
& q^{1 / 2} I_{32} I_{31}-q^{-1 / 2} I_{31} I_{32}=I_{21} \tag{5}
\end{align*}
$$

(the relations (4) and (5) are consequences of (1)-(3)). The associative algebra (with a unity) generated by the elements I_{21} and I_{32} satisfying the relations (1) and (2) or, equivalently, the associative algebra (with unit element) generated by I_{21}, I_{32} and I_{31} satisfying the relations (3)(5) is denoted by $U_{q}^{\prime}\left(s o_{3}\right)$. It is a q-deformation of the universal enveloping algebra $U\left(\mathrm{so}_{3}\right)$ of the Lie algebra $s o_{3}$ (for $q=1$ the relations (3)-(5) turn into the well known commutation relations for the basis elements of so_{3}).

Note that the relations (1) and (2) are a special case of the relations defining the nonstandard q-deformation $U_{q}^{\prime}\left(s o_{n}\right)$ of the universal enveloping algebra of the Lie algebra $s o_{n}$ (see [20]). The relations (3)-(5) appeared in the paper by Fairlie [8].

Sometimes, it is useful to extend the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(s l_{3}\right)$ to the embedding $U_{q}^{\prime}\left(s o_{3}\right) \subset U_{q}\left(g l_{3}\right)$. Instead of elements $k_{1}=q^{h_{1}}$ and $k_{2}=q^{h_{2}}$, in $U_{q}\left(g l_{3}\right)$ we have the elements $q^{H_{1}}, q^{H_{2}}$ and $q^{H_{3}}$ such that $q^{h_{1}}=q^{H_{2}} q^{-H_{1}}$ and $q^{h_{2}}=q^{H_{3}} q^{-H_{2}}$ (for a complete definition of $U_{q}\left(g l_{3}\right)$ see, for example, [7], chapter 6).

Throughout the rest of the paper we suppose that q is a real number such that $0<q<1$.

3. Finite-dimensional representations of $U_{q}^{\prime}\left(\mathrm{So}_{3}\right)$

The algebra $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$ has two types of irreducible finite-dimensional representations: representations of the classical type and representations of the non-classical type (see [10]). As in the case of the irreducible representations of the Lie algebra so_{3}, irreducible representations of the classical type are given by a non-negative integral or half-integral number r and are denoted by T_{r}^{\prime}. The representation T_{r}^{\prime} acts on a $(2 r+1)$-dimensional vector space V_{r}. There exists a basis $|r, x\rangle, x=-r,-r+1, \ldots, r$, in V_{r} such that the representation operators $T_{r}^{\prime}\left(I_{21}\right)$ and $T_{r}^{\prime}\left(I_{32}\right)$ are given by the formulae
$T_{r}^{\prime}\left(I_{21}\right)|r, x\rangle=\mathrm{i}[x]|r, x\rangle$
$T_{r}^{\prime}\left(I_{32}\right)|r, x\rangle=\frac{[x]}{[2 x]}\left\{([r-x][r+x+1])^{1 / 2}|r, x+1\rangle-([r-x+1][r+x])^{1 / 2}|r, x-1\rangle\right\}$
where $[a] \equiv[a]_{q}$ means a q-number defined as

$$
[a]=\frac{q^{a}-q^{-a}}{q-q^{-1}}
$$

Irreducible representations of non-classical type are given by a non-negative integer n and by numbers $\epsilon_{1}, \epsilon_{2}$ taking the values 0 or 1 . The corresponding representations are denoted by $R_{n \epsilon_{1} \epsilon_{2}}$ and act on an n-dimensional vector space V_{n} with the basis $|1\rangle,|2\rangle, \ldots,|n\rangle$. The operators $R_{n \epsilon_{1} \epsilon_{2}}\left(I_{21}\right)$ and $R_{n \epsilon_{1} \epsilon_{2}}\left(I_{32}\right)$ are given by the formulae

$$
\begin{align*}
R_{n \epsilon_{1} \epsilon_{2}}\left(I_{21}\right)|k\rangle & =\epsilon_{1} \frac{q^{k-1 / 2}+q^{-k+1 / 2}}{q-q^{-1}}|k\rangle \\
R_{n \epsilon_{1} \epsilon_{2}}\left(I_{32}\right)|1\rangle & =\epsilon_{2} \frac{[n]}{q^{1 / 2}-q^{-1 / 2}}|1\rangle+\mathrm{i} \frac{[n-1]}{q^{1 / 2}-q^{-1 / 2}}|2\rangle \tag{8}\\
R_{n \epsilon_{1} \epsilon_{2}}\left(I_{32}\right)|k\rangle & =\mathrm{i} \frac{q^{k}[n-k]}{q^{k-1 / 2}-q^{-k+1 / 2}}|k+1\rangle+\mathrm{i} \frac{q^{-k+1}[n+k-1]}{q^{k-1 / 2}-q^{-k+1 / 2}}|k-1\rangle
\end{align*}
$$

where $k \neq 1$ in the last formula and $\mathrm{i}=\sqrt{-1}$.
It follows from (6) and (8) that the spectra of the operators $T_{r}^{\prime}\left(I_{21}\right)$ and $R_{n \epsilon_{1} \epsilon_{2}}\left(I_{21}\right)$ consist of the points

$$
\begin{equation*}
\mathrm{i}[x] \quad x=-r,-r+1, \ldots, r \tag{9}
\end{equation*}
$$

and of the points

$$
\begin{equation*}
\epsilon_{1} \frac{q^{k-1 / 2}+q^{-k+1 / 2}}{q-q^{-1}} \quad k=1,2, \ldots, n \tag{10}
\end{equation*}
$$

respectively. Thus, for positive q the spectrum of the representation operator $T\left(I_{21}\right)$ consists of pure imaginary points for irreducible representations of the classical type and of real points for irreducible representations of the non-classical type.

We need below the following assertion: every finite-dimensional irreducible representation of $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$ is equivalent to one of the representations T_{r}^{\prime} of classical type or to one of the representations $R_{n \epsilon_{1} \epsilon_{2}}$ of non-classical type. This assertion is given in [9] for the algebra isomorphic to $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$.

Taking into account this assertion, we derive from formulae (9) and (10) that a finitedimensional irreducible representation T of $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$ is uniquely (up to an equivalence) determined by the spectrum of the operator $T\left(I_{21}\right)$.

4. Representations of the quantum algebra $U_{q}\left(s l_{3}\right)$

We consider irreducible finite-dimensional representations T_{ℓ} of the quantum algebra $U_{q}\left(s l_{3}\right)$ given by integers $\ell \equiv\left(l_{1}, l_{2}, l_{3}\right)$ such that $l_{1} \geqslant l_{2} \geqslant l_{3}$. The representation T_{ℓ} acts on the vector space V_{ℓ} with the Gel'fand-Tsetlin basis

$$
\left|m_{1}, m_{2} ; m\right\rangle \quad l_{1} \geqslant m_{1} \geqslant l_{2} \geqslant m_{2} \geqslant l_{3} \quad m_{1} \geqslant m \geqslant m_{2}
$$

The operators of this representation act on these basis vectors as

$$
\begin{align*}
& T_{\ell}\left(q^{h_{1}}\right)\left|m_{1}, m_{2} ; m\right\rangle=q^{2 m-m_{1}-m_{2}}\left|m_{1}, m_{2} ; m\right\rangle \tag{11}\\
& T_{\ell}\left(q^{h_{2}}\right)\left|m_{1}, m_{2} ; m\right\rangle=q^{2 m_{1}+2 m_{2}-l_{1}-l_{2}-l_{3}-m}\left|m_{1}, m_{2} ; m\right\rangle \tag{12}\\
& T_{\ell}\left(e_{1}\right)\left|m_{1}, m_{2} ; m\right\rangle=\left(\left[m_{1}-m\right]\left[m-m_{2}+1\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m+1\right\rangle \\
& T_{\ell}\left(f_{1}\right)\left|m_{1}, m_{2} ; m\right\rangle=\left(\left[m_{1}-m+1\right]\left[m-m_{2}\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m-1\right\rangle
\end{align*}
$$

(the operators $T_{\ell}\left(e_{2}\right)$ and $T_{\ell}\left(f_{2}\right)$ will be given below). In the next section we shall need the basis $\left|m_{1}, m_{2} ; m\right\rangle^{\prime}$ of the space V_{ℓ} given by

$$
\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{\left(m_{1}-m\right)\left(m-m_{2}\right) / 2}\left|m_{1}, m_{2} ; m\right\rangle
$$

The operators $T_{\ell}\left(q^{h_{1}}\right)$ and $T_{\ell}\left(q^{h_{2}}\right)$ act upon this new basis by the same formulae as upon the previous basis, that is by the formulae (11) and (12). For $T_{\ell}\left(e_{1}\right)$ and $T_{\ell}\left(f_{1}\right)$ we have
$T_{\ell}\left(e_{1}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{\left(2 m-m_{1}-m_{2}+1\right) / 2}\left(\left[m_{1}-m\right]\left[m-m_{2}+1\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m+1\right\rangle^{\prime}$
$T_{\ell}\left(f_{1}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{\left(-2 m+m_{1}+m_{2}+1\right) / 2}\left(\left[m_{1}-m+1\right]\left[m-m_{2}\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m-1\right\rangle^{\prime}$.
The representation T_{ℓ} can be extended to the representation of the quantum algebra $U_{q}\left(g l_{3}\right)$ (we denote this extended representation by the same symbol T_{ℓ}). For this extension we have

$$
\begin{aligned}
& T_{\ell}\left(q^{H_{1}}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{-m}\left|m_{1}, m_{2} ; m\right\rangle^{\prime} \\
& T_{\ell}\left(q^{H_{2}}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{m-m_{1}-m_{2}}\left|m_{1}, m_{2} ; m\right\rangle^{\prime} \\
& T_{\ell}\left(q^{H_{3}}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}=q^{m_{1}+m_{2}-l_{1}-l_{2}-l_{3}}\left|m_{1}, m_{2} ; m\right\rangle^{\prime} .
\end{aligned}
$$

We shall need these formulae in section 8 .

5. Restriction of the representations of $U_{q}\left(s l_{3}\right)$ to $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$

The aim of this section is to restrict the irreducible representation $T_{\ell}, \ell=\left(l_{1}, l_{2}, l_{3}\right)$, of $U_{q}\left(s l_{3}\right)$ to the subalgebra $U_{q}^{\prime}\left(s o_{3}\right)$ and to decompose this restriction into irreducible representations of $U_{q}^{\prime}\left(s o_{3}\right)$. In order to do this we consider the representation T_{ℓ} for elements of $U_{q}^{\prime}\left(s o_{3}\right)$. We have

$$
\begin{align*}
T_{\ell}\left(I_{21}\right) \mid m_{1}, & \left.m_{2} ; m\right\rangle^{\prime}=\left(T_{\ell}\left(f_{1}\right)-q T_{\ell}\left(q^{-h_{1}}\right) T_{\ell}\left(e_{1}\right)\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime} \\
= & q^{\left(m_{1}+m_{2}-2 m+1\right) / 2}\left(\left[m_{1}-m+1\right]\left[m-m_{2}\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m-1\right\rangle^{\prime} \\
& \quad-q^{\left(m_{1}+m_{2}-2 m-1\right) / 2}\left(\left[m_{1}-m\right]\left[m-m_{2}+1\right]\right)^{1 / 2}\left|m_{1}, m_{2} ; m+1\right\rangle^{\prime} . \tag{13}
\end{align*}
$$

Let us diagonalize this operator. This means that we have to find in the space V_{ℓ} the vectors

$$
\begin{equation*}
\left|m_{1}, m_{2} ; x\right\rangle^{\prime}=\sum_{m=m_{2}}^{m_{1}} a_{m}^{x}\left|m_{1}, m_{2} ; m\right\rangle^{\prime} \tag{14}
\end{equation*}
$$

such that

$$
\begin{equation*}
T_{\ell}\left(I_{21}\right)\left|m_{1}, m_{2} ; x\right\rangle^{\prime}=\mathrm{i}[x]\left|m_{1}, m_{2} ; x\right\rangle^{\prime} \tag{15}
\end{equation*}
$$

where $\mathrm{i}=\sqrt{-1}$ and $[x]$ is a q-number. We have to find eigenvalues $\mathrm{i}[x]$. (Note that representing these eigenvalues in the form $\mathrm{i}[x]$ we do not restrict ourselves since for a fixed positive q the number x may take any complex number.) In order to find eigenvalues in (15) we act by the operator $T_{\ell}\left(I_{21}\right)$ upon both sides of (14):

$$
\mathrm{i}[x]\left|m_{1}, m_{2} ; x\right\rangle^{\prime}=\sum_{m=m_{2}}^{m_{1}} a_{m}^{x} T_{\ell}\left(I_{21}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}
$$

We substitute into the right-hand side of this relation the expression (13) for the vectors $T_{\ell}\left(I_{21}\right)\left|m_{1}, m_{2} ; m\right\rangle^{\prime}$ and into the left-hand side the expression (14) for the vector $\left|m_{1}, m_{2} ; x\right\rangle^{\prime}$. Then we compare coefficients at the vector $\left|m_{1}, m_{2} ; m\right\rangle^{\prime}$. As a result, we obtain a recurrence relation for computation of the coefficients a_{m}^{x} :
$\left.a_{m+1}^{x} q^{-1 / 2} d \sqrt{\left[m_{1}-m\right]\left[m-m_{2}+1\right]}-a_{m-1}^{x} q^{1 / 2} d \sqrt{\left[m_{1}-m+1\right]\left[m-m_{2}\right]}\right)=\mathrm{i}[x] a_{m}^{x}$
where $d=q^{\left(m_{1}+m_{2}-2 m\right) / 2}$. Using the notation

$$
N=m_{1}-m_{2} \quad n=m-m_{2} \quad P_{n}(x)=a_{n+m_{2}}^{x}
$$

we obtain
$q^{(N-2 n-1) / 2}\left\{\sqrt{[N-n][n+1]} P_{n+1}(x)-q \sqrt{[N-n+1][n]} P_{n-1}(x)\right\}=\mathrm{i}[x] P_{n}(x)$.
Making here the substitution

$$
P_{n}(x)=\mathrm{i}^{-n}\left(\frac{[N]!}{[n]![N-n]!}\right)^{1 / 2} q^{-n(N-1) / 2} P_{n}^{\prime}(x)
$$

where $[n]!=[n][n-1][n-2] \cdots[1]$, we obtain the recurrence relation

$$
\left(1-q^{\prime n-N}\right) P_{n+1}^{\prime}(x)-q^{\prime-N}\left(1-q^{\prime n}\right) P_{n-1}^{\prime}(x)=q^{\prime-N / 2}\left(q^{\prime-x / 2}-q^{\prime x / 2}\right) P_{n}^{\prime}(x)
$$

where $q^{\prime}=q^{-2}$. We compare this relation with the recurrence relation (see [21])

$$
\begin{gathered}
c \hat{q}\left(\hat{q}^{n}-1\right) k_{n-1}(\lambda(y))+\left(\hat{q}^{-N}-c \hat{q}\right) \hat{q}^{n} k_{n}(\lambda(y))+\left(1-\hat{q}^{n-N}\right) k_{n+1}(\lambda(y)) \\
=\left(\hat{q}^{-y}-c \hat{q}^{y+1}\right) k_{n}(\lambda(y))
\end{gathered}
$$

for the dual q-Krawtchouk polynomials

$$
k_{n}(\lambda(y) ; c, N \mid \hat{q})={ }_{3} \varphi_{2}\left(\hat{q}^{-y},-c \hat{q}^{y+1}, \hat{q}^{-n} ; 0, \hat{q}^{-N} ; \hat{q}, \hat{q}\right)
$$

with $\lambda(y)=\hat{q}^{-y}-c \hat{q}^{y+1}$, where ${ }_{3} \varphi_{2}$ is a basic hypergeometric function (see [22] or [23], section 13.2.2). Then at $\hat{q}=q^{\prime}=q^{-2}, c=q^{\prime-N-1}=q^{2 N+2}$ and $x=2 y-N$ we obtain

$$
\left.P_{n}(x)=\mathrm{i}^{-n}\left(\frac{[N]!}{[n]![N-n]!}\right)^{1 / 2} q^{-n(N-1) / 2} k_{n}(\lambda(y)) ; q^{2 N+2}, N \mid q^{-2}\right)
$$

where $\lambda(y))=q^{x+N}-q^{-x+N}$. Therefore,

$$
\begin{aligned}
a_{m}^{x}=P_{m-m_{2}}(x) & =\mathrm{i}^{m_{2}-m} q^{-\left(m-m_{2}\right)\left(m_{1}-m_{2}-1\right) / 2}\left(\frac{\left[m_{1}-m_{2}\right]!}{\left[m-m_{2}\right]!\left[m_{1}-m\right]!}\right)^{1 / 2} \\
& \times{ }_{3} \varphi_{2}\left(q^{x+m_{1}-m_{2}},-q^{x+m_{2}-m_{1}}, q^{2\left(m-m_{2}\right)} ; 0, q^{2\left(m_{1}-m_{2}\right)} ; q^{-2}, q^{-2}\right)
\end{aligned}
$$

where m runs over the values $m_{2}, m_{2}+1, \ldots, m_{1}$, that is, $n=m-m_{2}$ runs over $0,1,2, \ldots, N=$ $m_{1}-m_{2}$.

The dual q-Krawtchouk polynomials are orthogonal on the set $y=0,1,2, \ldots, N$ (see [21]). This means that the rows and columns of the $(N+1) \times(N+1)$ matrix a with entries a_{m}^{x} are orthogonal to each other, and we obtain the vectors $\left|m_{1}, m_{2} ; x\right\rangle^{\prime}$ for the following values of $x=2 y-N$:

$$
x \in\{-N,-N+2, \ldots, N\} \equiv\left\{-\left(m_{1}-m_{2}\right),-\left(m_{1}-m_{2}\right)+2, \ldots, m_{1}-m_{2}\right\}
$$

(since x runs over these values when y runs over the values $0,1,2, \ldots, N$). Therefore, for each fixed m_{1} and m_{2} we obtain the spectral points

$$
\begin{equation*}
-\mathrm{i}\left[m_{1}-m_{2}\right],-\mathrm{i}\left[m_{1}-m_{2}-2\right], \ldots, \mathrm{i}\left[m_{1}-m_{2}\right] \tag{17}
\end{equation*}
$$

of the operator $T_{\ell}\left(I_{21}\right)$. The whole spectrum of this operator in the representation T_{ℓ} consists of the family of sets (17) (we denote these sets by $S\left(m_{1}, m_{2}\right)$) taken for all integral values m_{1} and m_{2} such that $l_{1} \geqslant m_{1} \geqslant l_{2} \geqslant m_{2} \geqslant l_{3}$, that is,

$$
\text { Spec } T_{\ell}\left(I_{21}\right)=\bigcup_{l_{1} \geqslant m_{1} \geqslant l_{2} \geqslant m_{2} \geqslant l_{3}} S\left(m_{1}, m_{2}\right)
$$

Thus, the spectrum of $T_{\ell}\left(I_{21}\right)$ consists only of purely imaginary points. Comparing this spectrum with the spectra of operators $T\left(I_{21}\right)$ of irreducible representations T of $U_{q}^{\prime}\left(s o_{3}\right)$ given in section 3 we conclude that the restriction $T_{\ell} \downarrow_{U_{q}^{\prime}\left(s o_{3}\right)}$ decomposes only into irreducible representations of the classical type (since only they give purely imaginary points in the spectra).

In order to find which irreducible representations of $U_{q}^{\prime}\left(\mathrm{so}_{3}\right)$ are contained in the decomposition of $T_{\ell} \downarrow_{U_{q}^{\prime}\left(s_{3}\right)}$ we have to split the spectrum Spec $T_{\ell}\left(I_{21}\right)$ into spectra of operators $T\left(I_{21}\right)$ of irreducible representations T of $U_{q}^{\prime}\left(s O_{3}\right)$. In order to do this we note that the set $S\left(m_{1}, m_{2}\right)$ is not a spectrum of some irreducible representation of $U_{q}^{\prime}\left(s o_{3}\right)$. We have

$$
\begin{equation*}
S\left(m_{1}, m_{2}\right) \bigcup S\left(m_{1}-1, m_{2}\right)=\operatorname{Spec} T_{m_{1}-m_{2}}^{\prime}\left(I_{21}\right) \tag{18}
\end{equation*}
$$

where $T_{m_{1}-m_{2}}^{\prime}$ is the irreducible representation of $U_{q}^{\prime}\left(s o_{3}\right)$ from section 3. Splitting Spec $T_{\ell}\left(I_{21}\right)$ into parts of type (18) we conclude that

$$
\begin{equation*}
T_{\ell} \downarrow_{U_{q}^{\prime}\left(s o_{3}\right)}=\sum_{s}^{\prime} \sum_{k=s}^{s+l_{2}-l_{3}} T_{k}^{\prime} \tag{19}
\end{equation*}
$$

if $l_{1}-l_{2}$ is odd and

$$
\begin{equation*}
T_{\ell} \downarrow_{U_{q}^{\prime}\left(s o_{3}\right)}=\sum_{s} \sum_{k=s}^{s+l_{2}-l_{3}} T_{k}^{\prime} \oplus \sum_{r}^{\prime} T_{r}^{\prime} \tag{20}
\end{equation*}
$$

if $l_{1}-l_{2}$ is even, where \sum_{s}^{\prime} denotes summation over the values $l_{1}-l_{2}, l_{1}-l_{2}-2, l_{1}-l_{2}-$ $4, \ldots, 1$ (or 2) and the last sum \sum_{r}^{\prime} is over the values $l_{2}-l_{3}, l_{2}-l_{3}-2, l_{2}-l_{3}-4, \ldots, 0$ (or 1).

The decompositions (19) and (20) are direct sum decompositions since $T_{\ell} \downarrow_{U_{q}^{\prime}\left(s o_{3}\right)}$ is a completely reducible representation (see [16]). Note that the decompositions (19) and (20) coincide with the corresponding decompositions for the reduction $S U(3) \supset S O$ (3) (see, for example, [24]).

The orthogonality relation for the coefficients a_{m}^{x} from (14) follows from the orthogonality for the dual q-Krawtchouk polynomials which can be found in [21]. Using the last orthogonality we find that

$$
\begin{equation*}
\sum_{x=-\left(m_{1}-m_{2}\right)}^{m_{1}-m_{2}} a_{m}^{x} \overline{a_{n}^{x}} W(x)=\delta_{m n} \tag{21}
\end{equation*}
$$

where the summation is with step 2 and

$$
\begin{equation*}
W(x)=q^{\left(x^{2}-m_{1}+m_{2}\right) / 2} \frac{[2 x]\left[m_{1}-m_{2}\right]!}{2[x]\left[m_{1}-m_{2}+x\right]!!\left[m_{1}-m_{2}-x\right]!!} \tag{22}
\end{equation*}
$$

with $[m]!!=[m][m-2][m-4] \cdots[0]$ (or [1]).
Formula (21) shows that the vectors (14) are not normalized. The vectors

$$
\begin{equation*}
\left|m_{1}, m_{2} x\right\rangle^{\prime \prime}=W(x)^{1 / 2}\left|m_{1}, m_{2} x\right\rangle^{\prime} \tag{23}
\end{equation*}
$$

are normal and $T_{\ell}\left(I_{2,1}\right)\left|m_{1}, m_{2} x\right\rangle^{\prime \prime}=\mathrm{i}[x]\left|m_{1}, m_{2} x\right\rangle^{\prime \prime}$.

6. The action formula for the operator $T_{\ell}\left(I_{32}\right)$

Below we consider the irreducible representations of $U_{q}\left(s l_{3}\right)$ only with highest weights $(l, 0,0)$. We denote these representations by $T_{l, \mathbf{0}}$. We derive from (19) and (20) that

$$
T_{l, 0} \downarrow_{U_{q}^{\prime}\left(s o_{3}\right)}=T_{l}^{\prime} \oplus T_{l-2}^{\prime} \oplus T_{l-4}^{\prime} \oplus \cdots \oplus T_{0}^{\prime}\left(\text { or } T_{1}^{\prime}\right)
$$

Let us find how the operator $T_{l, \mathbf{0}}\left(I_{32}\right)$ acts upon the basis elements $\left|m_{1}, 0 ; x\right\rangle^{\prime \prime} \equiv\left|m_{1} ; x\right\rangle^{\prime \prime}$ given by (23). Since

$$
\begin{aligned}
& T_{l, \mathbf{0}}\left(e_{2}\right)\left|m_{1} ; m\right\rangle^{\prime}=q^{-m / 2}\left(\left[l-m_{1}\right]\left[m_{1}-m+1\right]\right)^{1 / 2}\left|m_{1}+1 ; m\right\rangle^{\prime} \\
& T_{l, \mathbf{0}}\left(f_{2}\right)\left|m_{1} ; m\right\rangle^{\prime}=q^{m / 2}\left(\left[l-m_{1}+1\right]\left[m_{1}-m\right]\right)^{1 / 2}\left|m_{1}-1 ; m\right\rangle^{\prime} \\
& T_{l, \mathbf{0}}\left(q^{h_{2}}\right)\left|m_{1} ; m\right\rangle^{\prime}=q^{2 m_{1}-l-m}\left|m_{1} ; m\right\rangle^{\prime}
\end{aligned}
$$

where the vectors $\left|m_{1}, 0 ; m\right\rangle^{\prime}$ are denoted by $\left|m_{1} ; m\right\rangle^{\prime}$, then
$T_{l, \mathbf{0}}\left(I_{32}\right)\left|m_{1} ; m\right\rangle^{\prime}=q^{m / 2}\left\{\left(\left[l-m_{1}+1\right]\left[m_{1}-m\right]\right)^{1 / 2}\left|m_{1}-1 ; m\right\rangle^{\prime}\right.$

$$
\left.-q^{l-2 m_{1}-1}\left(\left[l-m_{1}\right]\left[m_{1}-m+1\right]\right)^{1 / 2}\left|m_{1}+1 ; m\right\rangle^{\prime}\right\} .
$$

Therefore, using relation (14) we have

$$
\begin{align*}
T_{l, \mathbf{0}}\left(I_{32}\right) \mid m_{1} ; & x\rangle^{\prime \prime}
\end{align*}=\sum_{m=0}^{m_{1}} c_{m}^{x}\left(m_{1}\right) q^{m / 2} \sqrt{\left[l-m_{1}+1\right]\left[m_{1}-m\right]}\left|m_{1}-1 ; m\right\rangle^{\prime}, ~\left(\sum_{m=0}^{m_{1}} c_{m}^{x}\left(m_{1}\right) q^{l-2 m_{1}-1+m / 2} \sqrt{\left[l-m_{1}\right]\left[m_{1}-m+1\right]}\left|m_{1}+1 ; m\right\rangle^{\prime} .\right.
$$

where $\left|m_{1} ; x\right\rangle^{\prime \prime} \equiv\left|m_{1}, 0 ; x\right\rangle^{\prime \prime}, c_{m}^{x}\left(m_{1}\right)=W(x)^{-1 / 2} a_{m}^{x}$ and $W(x)$ is given by formula (22) at $m_{2}=0$. We have to express the sums on the right-hand side as linear combinations of vectors of the type $\left|m_{1} ; x\right\rangle^{\prime \prime}$. (Note that it follows from the results of section 5 that m_{1} and x are of the same evenness.) For this we need the relation
$(\alpha-a)(1-f){ }_{3} \varphi_{2}(\alpha, a, b ; d, f ; \hat{q}, z)=(\alpha-f)(1-a)_{3} \varphi_{2}(\alpha, a \hat{q}, b ; d, f \hat{q} ; \hat{q}, z)$

$$
\begin{equation*}
+(1-\alpha)(f-a)_{3} \varphi_{2}(\alpha \hat{q}, a, b ; d, f \hat{q} ; \hat{q}, z) \tag{25}
\end{equation*}
$$

which is proved by a direct calculation by comparing coefficients at z^{n}. Using this formula at

$$
\begin{aligned}
& \hat{q}=q^{-2} \quad b=q^{2 m} \quad d=0 \quad f=q^{2 m_{1}} \\
& \alpha=q^{x+m_{1}} \quad a=-q^{m_{1}-x} \quad z=q^{-2}
\end{aligned}
$$

and the expression for $c_{m}^{x}\left(m_{1}\right)$ in terms of the q-hypergeometric function ${ }_{3} \varphi_{2}$ we obtain the following recurrence relation for the coefficients $c_{m}^{x}\left(m_{1}\right)$:

$$
\begin{gather*}
c_{m}^{x}\left(m_{1}\right)=\left(\frac{[x]}{[2 x]\left[m_{1}-m\right]}\right)^{1 / 2}\left\{q^{(x-m-1) / 2}\left(\frac{\left[m_{1}+x\right][x-1]}{[2 x-2]}\right)^{1 / 2} c_{m}^{x-1}\left(m_{1}-1\right)\right. \\
\left.+q^{-(x+m+1) / 2}\left(\frac{\left[m_{1}-x\right][x+1]}{[2 x+2]}\right)^{1 / 2} c_{m}^{x+1}\left(m_{1}-1\right)\right\} . \tag{26}
\end{gather*}
$$

Next we need the relation
${ }_{3} \varphi_{2}\left(\hat{q}^{-n}, a, b ; d, f ; \hat{q}, \hat{q}\right)=\frac{(1-d / b)(1-\hat{q} / f)}{(1-a / b)\left(1-\hat{q}^{1-n} / f\right)} 3 \varphi_{2}\left(\hat{q}^{-n}, a, b \hat{q}^{-1} ; d, f \hat{q}^{-1} ; \hat{q}, \hat{q}\right)$

$$
\begin{equation*}
+\frac{(1-d / a)(1-\hat{q} / f)}{(1-b / a)\left(1-\hat{q}^{1-n} / f\right)} 3 \varphi_{2}\left(\hat{q}^{-n}, a \hat{q}^{-1}, b ; d, f \hat{q}^{-1} ; \hat{q}, \hat{q}\right) . \tag{27}
\end{equation*}
$$

This formula is proved in the following way. By comparing coefficients at z^{n} the following relation is proved:
$(\alpha-A)_{3} \varphi_{2}(\alpha, A, B ; d, E ; \hat{q}, z)=\alpha(1-A)_{3} \varphi_{2}(\alpha, A \hat{q}, B ; d, E ; \hat{q}, z)$

$$
-A(1-\alpha)_{3} \varphi_{2}(\alpha \hat{q}, A, B ; d, E ; \hat{q}, z)
$$

Then we set $z=\hat{q}, B=\hat{q}^{-n}$ and apply to every ${ }_{3} \varphi_{2}$ the symmetry relation (3.2.3) from [15]. Using the renotation $\alpha=d / a, A=d / b$ and $E=d f / a b$, we obtain relation (27).

Using relation (27) at $\hat{q}=q^{-2}, f=q^{2 m_{1}}, a=q^{x+m_{1}}$ and $B=-q^{m_{1}-x}$ we derive

$$
\begin{gather*}
c_{m}^{x}\left(m_{1}\right)=\left(\frac{[x]}{[2 x]\left[m_{1}-m+1\right]}\right)^{1 / 2}\left\{q^{-(x+m) / 2}\left(\frac{\left[m_{1}-x+2\right][x-1]}{[2 x-2]}\right)^{1 / 2} c_{m}^{x-1}\left(m_{1}+1\right)\right. \\
\left.+q^{(x-m) / 2}\left(\frac{\left[m_{1}+x+2\right][x+1]}{[2 x+2]}\right)^{1 / 2} c_{m}^{x+1}\left(m_{1}+1\right)\right\} \tag{28}
\end{gather*}
$$

We substitute expression (26) for $c_{m}^{x}\left(m_{1}\right)$ into the first sum in (24) and expression (28) into the second sum in (24), and then use formulae (14) and (23) with $m_{2}=0$ and with m_{1} replaced by $m_{1}-1$ for the first sum and by $m_{1}+1$ for the second sum. As a result, after some calculation we derive

$$
\begin{align*}
T_{l, 0}\left(I_{32}\right)\left|m_{1} ; x\right\rangle & =-A(x) B\left(x, m_{1}\right)\left|m_{1}+1 ; x+1\right\rangle-A(-x) B\left(-x, m_{1}\right)\left|m_{1}+1 ; x-1\right\rangle \\
& +A(x) B\left(-x-1, m_{1}-1\right)\left|m_{1}-1 ; x+1\right\rangle \\
& +A(-x) B\left(x-1, m_{1}-1\right)\left|m_{1}-1 ; x-1\right\rangle \tag{29}
\end{align*}
$$

where $\left|m_{1} ; x\right\rangle=q^{-m_{1}\left(m_{1}-l\right) / 2}\left|m_{1} ; x\right\rangle^{\prime \prime}$ and
$A(x)=\left(\frac{[x][x+1]}{[2 x][2 x+2]}\right)^{1 / 2} \quad B\left(x, m_{1}\right)=q^{\left(l-2 m_{1}+x-1\right) / 2}\left(\left[l-m_{1}\right]\left[m_{1}+x+2\right]\right)^{1 / 2}$.
This formula will be used below.

7. The $U_{q}^{\prime}\left(s o_{3}\right)$ bases of $U_{q}\left(s l_{3}\right)$ representation spaces

In this section we find the basis of the vector space $V_{l, 0}$ of the representation $T_{l, \mathbf{0}}$ of the algebra $U_{q}\left(s l_{3}\right)$ for which the operators $T_{l, \mathbf{0}}\left(I_{21}\right)$ and $T_{l, \mathbf{0}}\left(I_{32}\right)$ are of the form (6) and (7), respectively. Let

$$
\begin{equation*}
\left|m_{1} ; x\right\rangle=\sum_{r} b_{r}^{m_{1}}(x)|r, x\rangle^{\prime} \tag{30}
\end{equation*}
$$

where $\left|m_{1} ; x\right\rangle$ are the basis elements from (29) and $|r, x\rangle^{\prime}$ are basis elements which must be found, that is,

$$
\begin{aligned}
T_{l, \mathbf{0}}\left(I_{32}\right)|r, x\rangle^{\prime} & =\frac{[x]}{[2 x]}([r-x][r+x+1])^{1 / 2}|r, x+1\rangle^{\prime} \\
& -\frac{[x]}{[2 x]}([r-x+1][r+x])^{1 / 2}|r, x-1\rangle^{\prime}
\end{aligned}
$$

and $T_{l, \mathbf{0}}\left(I_{21}\right)|r, x\rangle^{\prime}=\mathrm{i}[x]|r, x\rangle^{\prime}$. Then

$$
\begin{equation*}
T_{l, \mathbf{0}}\left(I_{32}\right)\left|m_{1} ; x\right\rangle=\sum_{r} b_{r}^{m_{1}}(x) T_{l, \mathbf{0}}\left(I_{32}\right)|r, x\rangle^{\prime} \tag{31}
\end{equation*}
$$

Substituting here the expression (29) for $T_{l, \mathbf{0}}\left(I_{32}\right)\left|m_{1} ; x\right\rangle$ and comparing coefficients at the vector $|r, x+1\rangle^{\prime}$ and then at the vector $|r, x-1\rangle^{\prime}$ we obtain the relations
$C_{x+1}^{m_{1}-1} b_{r}^{m_{1}-1}(x+1)-A_{x+1}^{m_{1}+1} b_{r}^{m_{1}+1}(x+1)=b_{r}^{m_{1}}(x) \frac{[x]}{[2 x]}([r-x][r+x+1])^{1 / 2}$
$D_{x-1}^{m_{1}-1} b_{r}^{m_{1}-1}(x-1)-B_{x-1}^{m_{1}+1} b_{r}^{m_{1}+1}(x-1)=-b_{r}^{m_{1}}(x) \frac{[x]}{[2 x]}([r-x+1][r+x])^{1 / 2}$
where

$$
\begin{array}{ll}
A_{x+1}^{m_{1}+1}=A(x) B\left(x, m_{1}\right) & B_{x-1}^{m_{1}+1}=A(-x) B\left(-x, m_{1}\right) \\
C_{x+1}^{m_{1}-1}=A(x) B\left(-x-1, m_{1}-1\right) & D_{x-1}^{m_{1}-1}=A(-x) B\left(x-1, m_{1}-1\right) .
\end{array}
$$

We have from (33) that
$b_{r}^{m_{1}}(x)=\frac{[2 x]}{[x]}([r-x+1][r+x])^{-1 / 2}\left(B_{x-1}^{m_{1}+1} b_{r}^{m_{1}+1}(x-1)-D_{x-1}^{m_{1}-1} b_{r}^{m_{1}-1}(x-1)\right)$.
Substituting this expression with $\left(m_{1}, x\right)$ replaced by $\left(m_{1}-1, x+1\right)$ and then by $\left(m_{1}+1, x+1\right)$ into (32), we obtain the recurrence relation for $b_{r}^{m_{1}}(x)$ with fixed r and x :

$$
\begin{aligned}
& A_{x+1}^{m_{1}+1} B_{x}^{m_{1}+2} b_{r}^{m_{1}+2}(x)-\left(A_{x+1}^{m_{1}+1} D_{x}^{m_{1}}+C_{x+1}^{m_{1}-1} B_{x}^{m_{1}}\right) b_{r}^{m_{1}}(x) \\
&+C_{x+1}^{m_{1}-1} D_{x}^{m_{1}-2} b_{r}^{m_{1}-2}(x)=-\frac{[x][x+1]}{[2 x][2 x+2]}[r-x][r+x+1] b_{r}^{m_{1}}(x) .
\end{aligned}
$$

Introducing the notation

$$
N=(l-x) / 2 \quad n=\left(m_{1}-x\right) / 2 \quad b_{r}^{m_{1}}(x) \equiv b_{r}^{2 n+x}(x)=M P_{n}^{x}(r)
$$

where

$$
M=q^{n(x+3 / 2)}\left(\frac{[2 n+2 x]!![2 N-2 n-1]!![2 N]!!}{[2 n]!![2 N-2 n]!![2 x]!![2 N-1]!!}\right)^{1 / 2}
$$

and using the explicit expressions for the coefficients A, B, C and D after some calculation we derive

$$
\begin{equation*}
A_{n} P_{n+1}^{x}(r)+C_{n} P_{n-1}^{x}(r)-\left(A_{n}+C_{n}\right) P_{n}^{x}(r)=-\left(1-q^{2(r-x)}\right)\left(1-q^{-2(r+x+1)}\right) P_{n}^{x}(r) \tag{34}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{n}=\left(1-q^{-4(n-N)}\right)\left(1-q^{-4(n+x+1)}\right) \\
& C_{n}=q^{-2(2 x+1)}\left(1-q^{-4 n}\right)\left(1-q^{-4(n-N-1 / 2)}\right)
\end{aligned}
$$

We compare this relation with the recurrence relation

$$
\begin{equation*}
A_{n} R_{n+1}(\mu(y))-\left(A_{n}+C_{n}\right) R_{n}(\mu(y))+C_{n} R_{n-1}(\mu(y))=-\left(1-\hat{q}^{-y}\right)\left(1-\gamma \delta \hat{q}^{y+1}\right) R_{n}(\mu(y)) \tag{35}
\end{equation*}
$$

with

$$
A_{n}=\left(1-\hat{q}^{n-N}\right)\left(1-\gamma \hat{q}^{n+1}\right) \quad C_{n}=\gamma \hat{q}\left(1-\hat{q}^{n}\right)\left(\delta-\hat{q}^{n-N-1}\right)
$$

for dual q-Hahn polynomials

$$
\left.R_{n}(\mu(y)) ; \gamma, \delta, N \mid \hat{q}\right)={ }_{3} \varphi_{2}\left(\hat{q}^{-n}, \hat{q}^{-y}, \gamma \delta \hat{q}^{y+1} ; \gamma \hat{q}, \hat{q}^{-N} ; \hat{q}, \hat{q}\right)
$$

where $\mu(y)=\hat{q}^{-y}+\gamma \delta \hat{q}^{y+1}$ (see [22]).
The relation (34) coincides with the recurrence relation (35) if we set

$$
\gamma=q^{-4 x} \quad \delta=q^{2} \quad y=(r-x) / 2
$$

and consider that l, x and r are of the same evenness. (Note that m_{1} and x are of the same evenness as shown in section 5.) Therefore,

$$
\begin{aligned}
P_{n}^{x}(r) & =R_{n}\left(\mu(y) ; q^{-4 x}, q^{2}, N \mid q^{-4}\right) \\
& ={ }_{3} \varphi_{2}\left(q^{4 n}, q^{2 r-2 x}, q^{-2(x+r+1)} ; q^{-4 x-4}, q^{4 N} ; q^{-4}, q^{-4}\right)
\end{aligned}
$$

Since $M P_{n}^{x}(r)=b_{r}^{m_{1}}(x)$, then for coefficients $b_{r}^{m_{1}}(x)$ from (30) we have
$b_{r}^{m_{1}}(x)=q^{n(x+3 / 2)}\left(\frac{[2 n+2 x]!![2 N-2 n-1]!![2 N]!!}{[2 n]!![2 N-2 n]!![2 x]!![2 N-1]!!}\right)^{1 / 2} R_{n}\left(\mu(y) ; q^{-4 x}, q^{2}, N \mid q^{-4}\right)$
where $N=\frac{1}{2}(l-x), n=\frac{1}{2}\left(m_{1}-x\right)$ and $\mu(y)=q^{2(r-x)}+q^{-2(x+r+1)}$.
The orthogonality relation for the coefficients $b_{r}^{m_{1}}(x)$ follows from the orthogonality for the dual q-Hahn polynomials which can be found in [22]. From the last orthogonality we derive that

$$
\begin{equation*}
\sum_{r} b_{r}^{m_{1}}(x) b_{r}^{m_{1}^{\prime}}(x) W^{\prime}(r)=\delta_{m_{1} m_{1}^{\prime}} \tag{37}
\end{equation*}
$$

where summation is over $r=x, x+2, x+4, \ldots, l$ and

$$
W^{\prime}(r)=\frac{q^{\frac{1}{2}(r-x)(r+x+1)-(l-x)(x+1)}[l-x]![r+x]![2 r+1]}{[r-x]![l+r+1]!![l-r]!![2 x]!!} .
$$

Formula (37) means that the vectors $|r, x\rangle^{\prime}$ from (30) are not normalized. The vectors

$$
|r, x\rangle=W^{\prime}(r)^{-1 / 2}|r, x\rangle^{\prime}
$$

are normalized. This normalization does not change the formula for the operator $T_{l, \mathbf{0}}\left(I_{32}\right)$. We have

$$
|r, x\rangle=\sum_{m_{1}} b_{r}^{m_{1}}(x) W(r)^{1 / 2}\left|m_{1} ; x\right\rangle \quad\left|m_{1} ; x\right\rangle=\sum_{r} b_{r}^{m_{1}}(x) W(r)^{1 / 2}|r, x\rangle .
$$

In formula (36), m_{1} and r are of the same evenness. If m_{1} and r are of different evenness, then we can calculate $b_{r}^{m_{1}}(x)$ by means of the formula

$$
\begin{aligned}
& b_{r}^{m_{1}}(x)=q^{\left(l-2 m_{1}\right) / 2}\left(\frac{[2 x][x-1] q^{-x}}{[x][2 x-2][r+x][r-x+1]}\right)^{1 / 2} \\
& \times\left(q^{-1 / 2} \sqrt{\left[l-m_{1}\right]\left[m_{1}-x+2\right]} b_{r}^{m_{1}+1}(x-1)\right. \\
&\left.-q^{x} \sqrt{\left[m_{1}+x\right]\left[l-m_{1}+1\right]} b_{r}^{m_{1}-1}(x-1)\right)
\end{aligned}
$$

or by the formula

$$
\begin{aligned}
& b_{r}^{m_{1}}(x)=-q^{(x-l) / 2}\left(\frac{[r-x+1][x-1][r+x]\left[m_{1}+x\right]}{[x][2 x-2][2 x]\left[l-m_{1}+1\right]}\right)^{1 / 2} b_{r}^{m_{1}-1}(x-1) \\
& \quad-q^{-(l+x) / 2}\left(\frac{[x+1][r-x][r+x+1]\left[m_{1}-x\right]}{[2 x+2][2 x][x]\left[l-m_{1}+1\right]}\right) b_{r}^{m_{1}-1}(x+1) .
\end{aligned}
$$

These formulae are derived from (32) and (33). They express the coefficients $b_{r}^{m_{1}}(x)$ with different evenness of m_{1} and r in terms of the coefficients with the same evenness of m_{1} and r.

8. Representations of $\boldsymbol{U}_{q}\left(s l_{3}\right)$ in the $\boldsymbol{U}_{q}^{\prime}\left(s o_{3}\right)$ basis

Now we wish to obtain formulae showing how operators of the representation $T_{l, 0}$ of the algebra $U_{q}\left(s l_{3}\right)$ act upon the basis $|r, x\rangle$ derived in the previous section. It is enough to derive such a formula only for the operator $T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right)$ corresponding to the element $q^{2 H_{3}} \in U_{q}\left(g l_{3}\right)$ (see section 2). The formulae for other operators can be obtained by commuting the operator $T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right)$ with the operators corresponding to elements of the subalgebra $U_{q}^{\prime}\left(s_{3}\right)$. Since $T_{l, \mathbf{0}}\left(q^{H_{3}}\right)\left|m_{1} ; m\right\rangle=q^{m_{1}-l}\left|m_{1} ; m\right\rangle$ (see section 4), then

$$
T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right)\left|m_{1} ; x\right\rangle=q^{2 m_{1}-2 l}\left|m_{1} ; x\right\rangle .
$$

We have

$$
\begin{align*}
T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right)|r, x\rangle & =T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right) \sum_{m_{1}} W(r)^{1 / 2} b_{r}^{m_{1}}(x)\left|m_{1} ; x\right\rangle \\
& =\sum_{m_{1}} q^{2 m_{1}-2 l} \hat{b}_{r}^{m_{1}}(x)\left|m_{1} ; x\right\rangle \tag{38}
\end{align*}
$$

where $\hat{b}_{r}^{m_{1}}(x)=W(r)^{1 / 2} b_{r}^{m_{1}}(x)$. Using the difference equation
$\left(\hat{q}^{-n}-1\right) R_{n}(\mu(y))=B(y) R_{n}(\mu(y+1))-(B(y)+D(y)) R_{n}(\mu(y))+D(y) R_{n}(\mu(y-1))$
for the dual q-Hahn polynomials $R_{n}(\mu(y) ; \gamma, \delta, N \mid \hat{q})$, where

$$
\begin{aligned}
& B(y)=\frac{\left(1-\hat{q}^{y-N}\right)\left(1-\gamma \hat{q}^{y+1}\right)\left(1-\gamma \delta \hat{q}^{y+1}\right)}{\left(1-\gamma \delta \hat{q}^{2 y+1}\right)\left(1-\gamma \delta \hat{q}^{2 y+2}\right)} \\
& D(y)=-\frac{\gamma \hat{q}^{y-N}\left(1-\hat{q}^{y}\right)\left(1-\gamma \delta \hat{q}^{y+N+1}\right)\left(1-\delta \hat{q}^{y}\right)}{\left(1-\gamma \delta \hat{q}^{2 y}\right)\left(1-\gamma \delta \hat{q}^{2 y+1}\right)}
\end{aligned}
$$

(see [22]), we derive from the expression for $\hat{b}_{r}^{m_{1}}(x)$ in terms of these polynomials the following recurrence relation for $\hat{b}_{r}^{m_{1}}(x)$:

$$
\begin{equation*}
q^{-2\left(l-m_{1}\right)} \hat{b}_{r}^{m_{1}}(x)=-\hat{B}(r) \hat{b}_{r+2}^{m_{1}}(x)-\hat{B}(r-2) \hat{b}_{r-2}^{m_{1}}(x)+\hat{C}(r) \hat{b}_{r}^{m_{1}}(x) \tag{39}
\end{equation*}
$$

where
$\hat{B}(r)=\frac{q-q^{-1}}{q^{(2 l+1) / 2}}\left(\frac{[l-r][l+r+3][r-x+1][r-x+2][r+x+1]}{[2 r+1][2 r+5][2 r+3]^{2}[r+x+2]^{-1}}\right)^{1 / 2}$
$\hat{C}(r)=\frac{q^{-l}\left(q-q^{-1}\right)}{[2 r+3]}\left(\frac{q^{r+1}[l-r][r+x+1]}{[2 r+1][r+x+2]^{-1}}+\frac{q^{-r}[r-x][r+l+1]}{[2 r-1][r-x-1]^{-1}}\right)+q^{2 x-2 l}$.
We substitute the expression (39) for $\hat{b}_{r}^{m_{1}}(x)$ into (38) and find on the right-hand side the expressions for the vectors $|r+2, x\rangle,|r-2, x\rangle$ and $|r, x\rangle$ in terms of the vectors $\left|m_{1} ; x\right\rangle$. This turns (38) into the formula

$$
\begin{equation*}
T_{l, \mathbf{0}}\left(q^{2 H_{3}}\right)|r, x\rangle=-\hat{B}(r)|r+2, x\rangle-\hat{B}(r-2)|r-2, x\rangle+\hat{C}(r)|r, x\rangle \tag{40}
\end{equation*}
$$

where $\hat{B}(r)$ and $\hat{C}(r)$ are such as in (39). This is the desired formula for the operator $T_{l, 0}\left(q^{2 H_{3}}\right)$.

Acknowledgments

The research of the second author was supported in part by award no UP1-2115 of the Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF).

References

[1] Elliott J P 1958 Proc. R. Soc. A 245128
[2] Arima A and Iachello F 1979 Ann. Phys. 123468
[3] Iachello F and Levine R D 1982 J. Chem. Phys. 773046
[4] Van der Jeugt 1992 J. Phys. A: Math. Gen. 252213
[5] Sciarrino A 1994 Symmetries in Science VII ed B Gruber (New York: Plenum) p 115
[6] Raychev P, Poussev R, Iudice N and Terziev P 1997 J. Phys. A: Math. Gen. 304383
[7] Klimyk A and Schmüdgen K 1997 Quantum Groups and their Representations (Berlin: Springer)
[8] Fairlie D 1990 J. Phys. A: Math. Gen. 23 L183
[9] Odesski A 1986 Func. Anal. Appl. 20152
[10] Havlíček M, Klimyk A and Pošta S 1999 J. Math. Phys. 402135
[11] Nelson J, Regge T and Zertuche F 1990 Nucl. Phys. B 339516
[12] Chekhov L and Fock V 2000 Czech. J. Phys. 501201
[13] Bullock D and Przytycki J H 1999 Preprint math. QA/9902117
[14] Iorgov N Z and Klimyk A U 2000 Methods Funct. Anal. Topol. 656
[15] Noumi M 1993 Adv. Math. 12316
[16] Noumi M, Umeda T and Wakayama M 1996 Compos. Math. 104227
[17] Iorgov N Z and Klimyk A U 2001 J. Math. Phys. 422135
[18] Drinfeld V G 1985 Sov. Math. Dokl. 32254
[19] Jimbo M 1985 Lett. Math. Phys. 1063
[20] Gavrilik A M and Klimyk A U 1991 Lett. Math. Phys. 21215
[21] Stanton D 1980 Am. J. Math. 102625
[22] Gasper G and Rahman M 1990 Basic Hypergeometric Functions (Cambridge: Cambridge University Press)
[23] Vilenkin Ja N and Klimyk A U 1993 Representation of Lie Groups and Special Functions vol 2 (Dordrecht: Kluwer)
[24] Elliott J and Harvey M 1963 Proc. R. Soc. 272557

