

Home Search Collections Journals About Contact us My IOPscience

The embedding $U_q(so_3) \subset U_q(sl_3)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 793

(http://iopscience.iop.org/0305-4470/34/4/307)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.98 The article was downloaded on 02/06/2010 at 09:19

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 34 (2001) 793-805

www.iop.org/Journals/ja PII: S0305-4470(01)15553-8

The embedding $U_q'(so_3) \subset U_q(sl_3)$

I I Kachurik and A U Klimyk

Institute for Theoretical Physics, Kiev 03143, Ukraine

Received 13 July 2000, in final form 26 October 2000

Abstract

We study the embedding $U'_q(so_3) \subset U_q(sl_3)$, where $U_q(sl_3)$ is a well known Drinfeld–Jimbo quantum algebra and the algebra $U'_q(so_3)$ is the cyclically symmetric *q*-deformation of the universal enveloping algebra $U(so_3)$ of the Lie algebra so_3 which is not a Drinfeld–Jimbo quantum algebra. Finite-dimensional irreducible representations of $U_q(sl_3)$ are decomposed into irreducible representations of $U'_q(so_3)$. An explicit expression for the matrix of the transition from the Gel'fand–Tsetlin basis for $U_q(sl_3)$ to the bases of irreducible representations of $U'_q(so_3)$ is calculated for representations of $U_q(sl_3)$ with highest weights (l, 0, 0). Entries of this matrix are expressed in terms of products of dual *q*-Krawtchouk polynomials and dual *q*-Hahn polynomials. Expressions for representation operators of $U_q(sl_3)$ in the $U'_q(so_3)$ basis are given.

PACS numbers: 0220S, 0220U, 0230G

1. Introduction

The embedding $SO(3) \subset SU(3)$ is of a great importance for physics [1–3]. On the Lie algebra level, this embedding is fulfilled by choosing the elements $E_{12} - E_{21}$, $E_{13} - E_{31}$, $E_{23} - E_{32}$ of the Lie algebra su₃ as a basis for the Lie subalgebra so_3 , where E_{ij} are the matrices with entries $(E_{ij})_{rs} = \delta_{ir}\delta_{js}$. The embedding $SO(3) \subset SU(3)$ differs essentially from the embedding $SU(2) \subset SU(3)$.

After the appearance of quantum groups and quantum algebras, much attention was paid to the construction of q-analogues of the embedding $SO(3) \subset SU(3)$ (see, for example, [4– 6] and references therein). It is clear now that it is not possible to construct an embedding $U_q(so_3) \subset U_q(sl_3)$ in such a way that $U_q(sl_3)$ and $U_q(so_3)$ would be a Hopf algebra and its Hopf subalgebra, respectively (see [7], chapter 1, for the corresponding definitions). In constructing an embedding $U_q(so_3) \subset U_q(sl_3)$ one usually tries to take the standard Drinfeld– Jimbo algebra $U_q(sl_2)$ (or an algebra isomorphic to it) as the subalgebra $U_q(so_3)$.

Our idea in this paper is the following. If we wish to construct a q-deformation of the embedding $so_3 \subset sl_3$, then we have to make a q-deformation of the commutation relations for the basis $I'_{21} \equiv E_{12} - E_{21}$, $I'_{31} \equiv E_{13} - E_{31}$, $I'_{32} \equiv E_{23} - E_{32}$ of the subalgebra so_3 . It is possible to construct such a q-deformation. The role of $U_q(so_3)$ in this q-deformed embedding

 $U_q(so_3) \subset U_q(sl_3)$ is the cyclically symmetric algebra generated by the elements I_{21} , I_{31} , I_{32} , satisfying the relations

$$[I_{21}, I_{32}]_q = I_{31}$$
 $[I_{32}, I_{31}]_q = I_{21}$ $[I_{31}, I_{21}]_q = I_{32}$

where the *q*-commutator $[A, B]_q$ is defined by $[A, B]_q = q^{1/2}AB - q^{-1/2}BA$. This algebra (we denote it by $U'_q(so_3)$) was introduced by Fairlie [8]. It is isomorphic to the algebra studied by Odesski [9]. It was shown in [10] that $U'_q(so_3)$ is not isomorphic to the quantum algebra $U_q(sl_2)$ and can be embedded into a certain extension of $U_q(sl_2)$.

The elements I_{21} , I_{31} , I_{32} of $U'_q(so_3)$ are q-deformations of the elements $E_{12} - E_{21}$, $E_{13} - E_{31}$, $E_{23} - E_{32}$ of the subalgebra so_3 of sl_3 and at $q \rightarrow 1$ they turn into these elements of so_3 . This means that $U'_q(so_3) \subset U_q(sl_3)$ is a natural q-deformation of the embedding $so_3 \subset sl_3$ and may be important for construction of q-deformations of the 'classical' models in nuclear physics. Some other motivations for studying the embedding $U'_q(so_3) \subset U_q(sl_3)$ are the following.

- (a) The algebra $U'_q(so_3)$ arises naturally as the algebra of observables in 2 + 1 quantum gravity on the torus (see, for example, [11]). This algebra appears in [12] in the study of geometry on Teichmüller spaces. It also appears in the theory of links in the algebraic topology [13]. The embedding $U'_q(so_3) \subset U_q(sl_3)$ allows us to use the algebra $U_q(sl_3)$ for studying properties of $U'_q(so_3)$. For example, using this embedding it is shown in [14] that $U'_q(so_3)$ has no divisors of zero and that finite-dimensional representations of the algebra $U'_q(so_3)$ separate its elements.
- (b) The embedding $U'_q(so_3) \subset U_q(sl_3)$ is also used for the construction of a quantum analogue of the symmetric Riemannian space SU(3)/SO(3) (see [15]). For studying harmonic analysis on this quantum symmetric space we need to know the relationship between finite-dimensional representations of $U'_q(so_3)$ and $U_q(sl_3)$. We study this relationship in the present paper.
- (c) A q-analogue of the theory of harmonic polynomials (q-harmonic polynomials) on the three-dimensional quantum vector space \mathbb{R}_q^3 is constructed by using the algebra $U_q(sl_3)$ and its subalgebra $U'_q(so_3)$. (This theory is contained in [16, 17].) If we wish to know how elements of the algebra $U_q(sl_3)$ act upon basis q-harmonic polynomials, we have to use the results of the present paper.
- (d) The concrete results of this paper on the embedding $U'_q(so_3) \subset U_q(sl_3)$ can be used for studying q-orthogonal polynomials. Namely, it is known (see [15]) that zonal spherical functions on the q-analogue of the quantum space SU(3)/SO(3) are expressed in terms of symmetric Macdonald polynomials. The results of our paper allows us to connect symmetric Macdonald polynomials with dual q-Krawtchouk polynomials and dual q-Hahn polynomials. The results on this subject will be published in a separate paper.

A shortcoming of the algebra $U'_q(so_3)$ is that a Hopf algebra structure is not known on it. Nevertheless, it is a coideal of $U_q(sl_3)$. Moreover, it is possible to construct tensor products of finite-dimensional irreducible representations of $U'_q(so_3)$ (usually, a Hopf algebra structure is used for such a construction for Drinfeld–Jimbo quantum algebras). The details of such a construction see [10].

The aim of this paper is to study the embedding $U'_q(so_3) \subset U_q(sl_3)$ with the subalgebra $U'_q(so_3)$ defined above. First, we restrict finite-dimensional irreducible representations of $U_q(sl_3)$ to $U'_q(so_3)$ and decompose these restrictions into irreducible representations of $U'_q(so_3)$. For this decomposition we diagonalize (by using the dual q-Krawtchouk polynomials) the operators $T(I_{21})$ of irreducible representations T of $U_q(sl_3)$. We show

that this decomposition is the same as in the classical case $SO(3) \subset SU(3)$. Then we restrict ourselves only by irreducible representations $T_{(l,0,0)}$ of $U_q(sl_3)$ with highest weights (l, 0, 0) and construct explicitly $U'_q(so_3)$ bases in the spaces of these representations. In order to construct them we use properties of dual q-Hahn polynomials. Products of dual q-Krawtchouk polynomials and dual q-Hahn polynomials constitute coefficients of transition from the Gel'fand–Tsetlin basis for the irreducible representation $T_{(l,0,0)}$ to the $U'_q(so_3)$ basis. Then we derive how operators of the representation $T_{(l,0,0)}$ of $U_q(sl_3)$ act upon the $U'_q(so_3)$ basis elements. In fact, we derive a formula of action of $T_{(l,0,0)}$ upon the last basis only for the single operator $T_{(l,0,0)}(q^{2H_3})$, for which the action formula is simplest. (Here q^{2H_3} is the element of the Cartan subalgebra defined at the end of section 2.) As in the classical case, the corresponding formulae for other operators $T_{(l,0,0)}(a)$ with generating elements a of $U_q(sl_3)$ can be found by commuting (or q-commuting) q^{2H_3} with elements of $U'_q(so_3)$. The action formulae for the representation operators corresponding to the last elements are known.

2. The quantum algebra $U_q(sl_3)$ and its subalgebra $U'_q(so_3)$

The quantum algebra $U_q(sl_3)$ is generated by the elements e_1 , f_1 , e_2 , f_2 , $k_1 = q^{h_1}$, $k_2 = q^{h_2}$ satisfying the relations

$$k_{1}k_{2} = k_{2}k_{1} \qquad k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1 \qquad i = 1, 2$$

$$k_{i}e_{j}k_{i}^{-1} = q^{a_{ij}}e_{j} \qquad k_{i}f_{j}k_{i}^{-1} = q^{-a_{ij}}f_{j} \qquad [e_{i}, f_{j}] = \delta_{ij}\frac{k_{i} - k_{i}^{-1}}{q - q^{-1}}$$

$$e_{i}^{2}e_{i\pm 1} - (q + q^{-1})e_{i}e_{i\pm 1}e_{i} + e_{i\pm 1}e_{i}^{2} = 0$$

$$f_{i}^{2}f_{i\pm 1} - (q + q^{-1})f_{i}f_{i\pm 1}f_{i} + f_{i\pm 1}f_{i}^{2} = 0$$

where $a_{ii} = 2$ and $a_{12} = a_{21} = -1$ (see [18, 19]).

Let us take in $U_q(sl_3)$ the elements

$$I_{21} = f_1 - qq^{-h_1}e_1$$
 $I_{32} = f_2 - qq^{-h_2}e_2.$

Direct calculation shows that these elements satisfy the relations

$$I_{21}^2 I_{32} - (q + q^{-1}) I_{21} I_{32} I_{21} + I_{32} I_{21}^2 = -I_{32}$$
⁽¹⁾

$$I_{21}I_{32}^2 - (q+q^{-1})I_{32}I_{21}I_{32} + I_{32}^2I_{21} = -I_{21}.$$
(2)

Introducing the element $I_{31} = q^{1/2}I_{21}I_{32} - q^{-1/2}I_{32}I_{21}$, we obtain the quadratic relations for I_{21} , I_{32} and I_{31} :

$$q^{1/2}I_{21}I_{32} - q^{-1/2}I_{32}I_{21} = I_{31}$$
(3)

$$q^{1/2}I_{31}I_{21} - q^{-1/2}I_{21}I_{31} = I_{32}$$
(4)

$$q^{1/2}I_{32}I_{31} - q^{-1/2}I_{31}I_{32} = I_{21}$$
(5)

(the relations (4) and (5) are consequences of (1)–(3)). The associative algebra (with a unity) generated by the elements I_{21} and I_{32} satisfying the relations (1) and (2) or, equivalently, the associative algebra (with unit element) generated by I_{21} , I_{32} and I_{31} satisfying the relations (3)–(5) is denoted by $U'_q(so_3)$. It is a *q*-deformation of the universal enveloping algebra $U(so_3)$ of the Lie algebra so_3 (for q = 1 the relations (3)–(5) turn into the well known commutation relations for the basis elements of so_3).

Note that the relations (1) and (2) are a special case of the relations defining the nonstandard q-deformation $U'_q(so_n)$ of the universal enveloping algebra of the Lie algebra so_n (see [20]). The relations (3)–(5) appeared in the paper by Fairlie [8].

Sometimes, it is useful to extend the embedding $U'_q(so_3) \subset U_q(sl_3)$ to the embedding $U'_q(so_3) \subset U_q(gl_3)$. Instead of elements $k_1 = q^{h_1}$ and $k_2 = q^{h_2}$, in $U_q(gl_3)$ we have the elements q^{H_1} , q^{H_2} and q^{H_3} such that $q^{h_1} = q^{H_2}q^{-H_1}$ and $q^{h_2} = q^{H_3}q^{-H_2}$ (for a complete definition of $U_q(gl_3)$ see, for example, [7], chapter 6).

Throughout the rest of the paper we suppose that q is a real number such that 0 < q < 1.

3. Finite-dimensional representations of $U'_a(so_3)$

The algebra $U'_q(so_3)$ has two types of irreducible finite-dimensional representations: representations of the classical type and representations of the non-classical type (see [10]). As in the case of the irreducible representations of the Lie algebra so_3 , irreducible representations of the classical type are given by a non-negative integral or half-integral number r and are denoted by T'_r . The representation T'_r acts on a (2r + 1)-dimensional vector space V_r . There exists a basis $|r, x\rangle$, x = -r, -r + 1, ..., r, in V_r such that the representation operators $T'_r(I_{21})$ and $T'_r(I_{32})$ are given by the formulae

$$T'_r(I_{21})|r,x\rangle = \mathbf{i}[x]|r,x\rangle \tag{6}$$

$$T'_{r}(I_{32})|r,x\rangle = \frac{[x]}{[2x]}\{([r-x][r+x+1])^{1/2}|r,x+1\rangle - ([r-x+1][r+x])^{1/2}|r,x-1\rangle\}$$
(7)

where $[a] \equiv [a]_q$ means a q-number defined as

$$[a] = \frac{q^a - q^{-a}}{q - q^{-1}}.$$

Irreducible representations of non-classical type are given by a non-negative integer *n* and by numbers ϵ_1, ϵ_2 taking the values 0 or 1. The corresponding representations are denoted by $R_{n\epsilon_1\epsilon_2}$ and act on an *n*-dimensional vector space V_n with the basis $|1\rangle, |2\rangle, \ldots, |n\rangle$. The operators $R_{n\epsilon_1\epsilon_2}(I_{21})$ and $R_{n\epsilon_1\epsilon_2}(I_{32})$ are given by the formulae

$$R_{n\epsilon_{1}\epsilon_{2}}(I_{21})|k\rangle = \epsilon_{1} \frac{q^{k-1/2} + q^{-k+1/2}}{q - q^{-1}}|k\rangle$$

$$R_{n\epsilon_{1}\epsilon_{2}}(I_{32})|1\rangle = \epsilon_{2} \frac{[n]}{q^{1/2} - q^{-1/2}}|1\rangle + i\frac{[n-1]}{q^{1/2} - q^{-1/2}}|2\rangle$$

$$R_{n\epsilon_{1}\epsilon_{2}}(I_{32})|k\rangle = i\frac{q^{k}[n-k]}{q^{k-1/2} - q^{-k+1/2}}|k+1\rangle + i\frac{q^{-k+1}[n+k-1]}{q^{k-1/2} - q^{-k+1/2}}|k-1\rangle$$
(8)

where $k \neq 1$ in the last formula and $i = \sqrt{-1}$.

It follows from (6) and (8) that the spectra of the operators $T'_r(I_{21})$ and $R_{n\epsilon_1\epsilon_2}(I_{21})$ consist of the points

$$i[x] x = -r, -r+1, \dots, r$$
 (9)

and of the points

$$\epsilon_1 \frac{q^{k-1/2} + q^{-k+1/2}}{q - q^{-1}} \qquad k = 1, 2, \dots, n \tag{10}$$

respectively. Thus, for positive q the spectrum of the representation operator $T(I_{21})$ consists of pure imaginary points for irreducible representations of the classical type and of real points for irreducible representations of the non-classical type.

We need below the following assertion: every finite-dimensional irreducible representation of $U'_q(so_3)$ is equivalent to one of the representations T'_r of classical type or to one of the representations $R_{n\epsilon_1\epsilon_2}$ of non-classical type. This assertion is given in [9] for the algebra isomorphic to $U'_q(so_3)$.

Taking into account this assertion, we derive from formulae (9) and (10) that a finitedimensional irreducible representation T of $U'_q(so_3)$ is uniquely (up to an equivalence) determined by the spectrum of the operator $T(I_{21})$.

4. Representations of the quantum algebra $U_q(sl_3)$

We consider irreducible finite-dimensional representations T_{ℓ} of the quantum algebra $U_q(sl_3)$ given by integers $\ell \equiv (l_1, l_2, l_3)$ such that $l_1 \ge l_2 \ge l_3$. The representation T_{ℓ} acts on the vector space V_{ℓ} with the Gel'fand–Tsetlin basis

$$|m_1, m_2; m\rangle$$
 $l_1 \ge m_1 \ge l_2 \ge m_2 \ge l_3$ $m_1 \ge m \ge m_2$.

The operators of this representation act on these basis vectors as

$$T_{\ell}(q^{h_1})|m_1, m_2; m\rangle = q^{2m - m_1 - m_2}|m_1, m_2; m\rangle$$
(11)

$$T_{\ell}(q^{h_2})|m_1, m_2; m\rangle = q^{2m_1 + 2m_2 - l_1 - l_2 - l_3 - m}|m_1, m_2; m\rangle$$
(12)
$$T_{\ell}(e_1)|m_1, m_2; m\rangle = ([m_1 - m][m - m_2 + 1])^{1/2}|m_1, m_2; m + 1\rangle$$

$$T_{\ell}(f_1)|m_1, m_2; m\rangle = ([m_1 - m + 1][m - m_2])^{1/2}|m_1, m_2; m - 1\rangle$$

(the operators $T_{\ell}(e_2)$ and $T_{\ell}(f_2)$ will be given below). In the next section we shall need the basis $|m_1, m_2; m\rangle'$ of the space V_{ℓ} given by

$$|m_1, m_2; m\rangle' = q^{(m_1 - m)(m - m_2)/2} |m_1, m_2; m\rangle.$$

The operators $T_{\ell}(q^{h_1})$ and $T_{\ell}(q^{h_2})$ act upon this new basis by the same formulae as upon the previous basis, that is by the formulae (11) and (12). For $T_{\ell}(e_1)$ and $T_{\ell}(f_1)$ we have

$$T_{\ell}(e_1)|m_1, m_2; m\rangle' = q^{(2m-m_1-m_2+1)/2}([m_1-m][m-m_2+1])^{1/2}|m_1, m_2; m+1\rangle'$$

$$T_{\ell}(f_1)|m_1, m_2; m\rangle' = q^{(-2m+m_1+m_2+1)/2}([m_1-m+1][m-m_2])^{1/2}|m_1, m_2; m-1\rangle'.$$

The representation T_{ℓ} can be extended to the representation of the quantum algebra $U_q(gl_3)$ (we denote this extended representation by the same symbol T_{ℓ}). For this extension we have

$$T_{\ell}(q^{H_1})|m_1, m_2; m\rangle' = q^{-m}|m_1, m_2; m\rangle'$$

$$T_{\ell}(q^{H_2})|m_1, m_2; m\rangle' = q^{m-m_1-m_2}|m_1, m_2; m\rangle'$$

$$T_{\ell}(q^{H_3})|m_1, m_2; m\rangle' = q^{m_1+m_2-l_1-l_2-l_3}|m_1, m_2; m\rangle$$

We shall need these formulae in section 8.

5. Restriction of the representations of $U_q(sl_3)$ to $U'_q(so_3)$

The aim of this section is to restrict the irreducible representation T_{ℓ} , $\ell = (l_1, l_2, l_3)$, of $U_q(sl_3)$ to the subalgebra $U'_q(so_3)$ and to decompose this restriction into irreducible representations of $U'_q(so_3)$. In order to do this we consider the representation T_{ℓ} for elements of $U'_q(so_3)$. We have

$$T_{\ell}(I_{21})|m_1, m_2; m\rangle' = (T_{\ell}(f_1) - qT_{\ell}(q^{-h_1})T_{\ell}(e_1))|m_1, m_2; m\rangle'$$

= $q^{(m_1+m_2-2m+1)/2}([m_1 - m + 1][m - m_2])^{1/2}|m_1, m_2; m - 1\rangle'$
 $-q^{(m_1+m_2-2m-1)/2}([m_1 - m][m - m_2 + 1])^{1/2}|m_1, m_2; m + 1\rangle'.$ (13)

Let us diagonalize this operator. This means that we have to find in the space V_{ℓ} the vectors

$$|m_1, m_2; x\rangle' = \sum_{m=m_2}^{m_1} a_m^x |m_1, m_2; m\rangle'$$
(14)

such that

$$T_{\ell}(I_{21})|m_1, m_2; x\rangle' = \mathbf{i}[x]|m_1, m_2; x\rangle'$$
(15)

where $i = \sqrt{-1}$ and [x] is a q-number. We have to find eigenvalues i[x]. (Note that representing these eigenvalues in the form i[x] we do not restrict ourselves since for a fixed positive q the number x may take any complex number.) In order to find eigenvalues in (15) we act by the operator $T_{\ell}(I_{21})$ upon both sides of (14):

$$i[x]|m_1, m_2; x\rangle' = \sum_{m=m_2}^{m_1} a_m^x T_\ell(I_{21})|m_1, m_2; m\rangle'.$$

We substitute into the right-hand side of this relation the expression (13) for the vectors $T_{\ell}(I_{21})|m_1, m_2; m\rangle'$ and into the left-hand side the expression (14) for the vector $|m_1, m_2; x\rangle'$. Then we compare coefficients at the vector $|m_1, m_2; m\rangle'$. As a result, we obtain a recurrence relation for computation of the coefficients a_m^x :

$$a_{m+1}^{x}q^{-1/2}d\sqrt{[m_1-m][m-m_2+1]} - a_{m-1}^{x}q^{1/2}d\sqrt{[m_1-m+1][m-m_2]} = i[x]a_m^{x} \quad (16)$$

where $d = q^{(m_1+m_2-2m)/2}$. Using the notation

$$N = m_1 - m_2$$
 $n = m - m_2$ $P_n(x) = a_{n+m_2}^x$

we obtain

$$q^{(N-2n-1)/2}\{\sqrt{[N-n][n+1]}P_{n+1}(x) - q\sqrt{[N-n+1][n]}P_{n-1}(x)\} = \mathbf{i}[x]P_n(x).$$

Making here the substitution

$$P_n(x) = i^{-n} \left(\frac{[N]!}{[n]![N-n]!} \right)^{1/2} q^{-n(N-1)/2} P'_n(x)$$

where $[n]! = [n][n-1][n-2]\cdots[1]$, we obtain the recurrence relation

$$(1 - q'^{n-N})P'_{n+1}(x) - q'^{-N}(1 - q'^{n})P'_{n-1}(x) = q'^{-N/2}(q'^{-x/2} - q'^{x/2})P'_{n}(x)$$

where $q' = q^{-2}$. We compare this relation with the recurrence relation (see [21]) $c\hat{q}(\hat{q}^n - 1)k_{n-1}(\lambda(y)) + (\hat{q}^{-N} - c\hat{q})\hat{q}^n k_n(\lambda(y)) + (1 - \hat{q}^{n-N})k_{n+1}(\lambda(y))$ $= (\hat{q}^{-y} - c\hat{q}^{y+1})k_n(\lambda(y))$ for the dual q-Krawtchouk polynomials

$$k_n(\lambda(y); c, N \mid \hat{q}) = {}_3\varphi_2(\hat{q}^{-y}, -c\hat{q}^{y+1}, \hat{q}^{-n}; 0, \hat{q}^{-N}; \hat{q}, \hat{q})$$

with $\lambda(y) = \hat{q}^{-y} - c\hat{q}^{y+1}$, where $_3\varphi_2$ is a basic hypergeometric function (see [22] or [23], section 13.2.2). Then at $\hat{q} = q' = q^{-2}$, $c = q'^{-N-1} = q^{2N+2}$ and x = 2y - N we obtain

$$P_n(x) = i^{-n} \left(\frac{[N]!}{[n]![N-n]!} \right)^{1/2} q^{-n(N-1)/2} k_n(\lambda(y)); \ q^{2N+2}, N \mid q^{-2})$$

where $\lambda(y) = q^{x+N} - q^{-x+N}$. Therefore,

$$a_m^x = P_{m-m_2}(x) = i^{m_2-m} q^{-(m-m_2)(m_1-m_2-1)/2} \left(\frac{[m_1-m_2]!}{[m-m_2]![m_1-m]!} \right)^{1/2} \\ \times {}_3\varphi_2(q^{x+m_1-m_2}, -q^{x+m_2-m_1}, q^{2(m-m_2)}; 0, q^{2(m_1-m_2)}; q^{-2}, q^{-2})$$

where m runs over the values m_2, m_2+1, \ldots, m_1 , that is, $n = m - m_2$ runs over 0, 1, 2, ..., $N = m_1 - m_2$.

The dual *q*-Krawtchouk polynomials are orthogonal on the set y = 0, 1, 2, ..., N (see [21]). This means that the rows and columns of the $(N + 1) \times (N + 1)$ matrix *a* with entries a_m^x are orthogonal to each other, and we obtain the vectors $|m_1, m_2; x\rangle'$ for the following values of x = 2y - N:

$$x \in \{-N, -N+2, \dots, N\} \equiv \{-(m_1 - m_2), -(m_1 - m_2) + 2, \dots, m_1 - m_2\}$$

(since x runs over these values when y runs over the values 0, 1, 2, ..., N). Therefore, for each fixed m_1 and m_2 we obtain the spectral points

$$-i[m_1 - m_2], -i[m_1 - m_2 - 2], \dots, i[m_1 - m_2]$$
 (17)

of the operator $T_{\ell}(I_{21})$. The whole spectrum of this operator in the representation T_{ℓ} consists of the family of sets (17) (we denote these sets by $S(m_1, m_2)$) taken for all integral values m_1 and m_2 such that $l_1 \ge m_1 \ge l_2 \ge m_2 \ge l_3$, that is,

Spec
$$T_{\ell}(I_{21}) = \bigcup_{l_1 \ge m_1 \ge l_2 \ge m_2 \ge l_3} S(m_1, m_2).$$

Thus, the spectrum of $T_{\ell}(I_{21})$ consists only of purely imaginary points. Comparing this spectrum with the spectra of operators $T(I_{21})$ of irreducible representations T of $U'_q(so_3)$ given in section 3 we conclude that the restriction $T_{\ell} \downarrow_{U'_q(so_3)}$ decomposes only into irreducible representations of the classical type (since only they give purely imaginary points in the spectra).

In order to find which irreducible representations of $U'_q(so_3)$ are contained in the decomposition of $T_\ell \downarrow_{U'_q(so_3)}$ we have to split the spectrum Spec $T_\ell(I_{21})$ into spectra of operators $T(I_{21})$ of irreducible representations T of $U'_q(so_3)$. In order to do this we note that the set $S(m_1, m_2)$ is not a spectrum of some irreducible representation of $U'_q(so_3)$. We have

$$S(m_1, m_2) \bigcup S(m_1 - 1, m_2) = \text{Spec } T'_{m_1 - m_2}(I_{21})$$
(18)

where $T'_{m_1-m_2}$ is the irreducible representation of $U'_q(so_3)$ from section 3. Splitting Spec $T_\ell(I_{21})$ into parts of type (18) we conclude that

$$T_{\ell}\downarrow_{U'_{q}(so_{3})} = \sum_{s}' \sum_{k=s}^{s+l_{2}-l_{3}} T'_{k}$$
(19)

if $l_1 - l_2$ is odd and

$$T_{\ell}\downarrow_{U'_{q}(so_{3})} = \sum_{s}' \sum_{k=s}^{s+l_{2}-l_{3}} T'_{k} \oplus \sum_{r}' T'_{r}$$
(20)

if $l_1 - l_2$ is even, where \sum_{s}' denotes summation over the values $l_1 - l_2$, $l_1 - l_2 - 2$, $l_1 - l_2 - 4$, ..., 1 (or 2) and the last sum \sum_{r}' is over the values $l_2 - l_3$, $l_2 - l_3 - 2$, $l_2 - l_3 - 4$, ..., 0 (or 1).

The decompositions (19) and (20) are direct sum decompositions since $T_{\ell} \downarrow_{U'_q(so_3)}$ is a completely reducible representation (see [16]). Note that the decompositions (19) and (20) coincide with the corresponding decompositions for the reduction $SU(3) \supset SO(3)$ (see, for example, [24]).

The orthogonality relation for the coefficients a_m^x from (14) follows from the orthogonality for the dual *q*-Krawtchouk polynomials which can be found in [21]. Using the last orthogonality we find that

$$\sum_{m_1-m_2}^{m_1-m_2} a_m^x \overline{a_n^x} W(x) = \delta_{mn}$$
(21)

where the summation is with step 2 and

х

$$W(x) = q^{(x^2 - m_1 + m_2)/2} \frac{[2x][m_1 - m_2]!}{2[x][m_1 - m_2 + x]!![m_1 - m_2 - x]!!}$$
(22)

with $[m]!! = [m][m-2][m-4] \cdots [0]$ (or [1]).

Formula (21) shows that the vectors (14) are not normalized. The vectors

$$|m_1, m_2 x\rangle'' = W(x)^{1/2} |m_1, m_2 x\rangle'$$
(23)

are normal and $T_{\ell}(I_{2,1})|m_1, m_2 x\rangle'' = i[x]|m_1, m_2 x\rangle''$.

6. The action formula for the operator $T_{\ell}(I_{32})$

Below we consider the irreducible representations of $U_q(sl_3)$ only with highest weights (l, 0, 0). We denote these representations by $T_{l,0}$. We derive from (19) and (20) that

$$T_{l,\mathbf{0}}\downarrow_{U'_q(so_3)} = T'_l \oplus T'_{l-2} \oplus T'_{l-4} \oplus \cdots \oplus T'_0 \text{ (or } T'_1).$$

Let us find how the operator $T_{l,0}(I_{32})$ acts upon the basis elements $|m_1, 0; x\rangle'' \equiv |m_1; x\rangle''$ given by (23). Since

$$\begin{aligned} T_{l,\mathbf{0}}(e_2)|m_1; \ m\rangle' &= q^{-m/2}([l-m_1][m_1-m+1])^{1/2}|m_1+1; \ m\rangle' \\ T_{l,\mathbf{0}}(f_2)|m_1; \ m\rangle' &= q^{m/2}([l-m_1+1][m_1-m])^{1/2}|m_1-1; \ m\rangle' \\ T_{l,\mathbf{0}}(q^{h_2})|m_1; \ m\rangle' &= q^{2m_1-l-m}|m_1; \ m\rangle' \end{aligned}$$

where the vectors $|m_1, 0; m\rangle'$ are denoted by $|m_1; m\rangle'$, then

$$T_{l,\mathbf{0}}(I_{32})|m_1;\ m\rangle' = q^{m/2}\{([l-m_1+1][m_1-m])^{1/2}|m_1-1;\ m\rangle$$

$$q^{l-2m_1-1}([l-m_1][m_1-m+1])^{1/2}|m_1+1; m\rangle'\}$$

Therefore, using relation (14) we have

$$T_{l,\mathbf{0}}(I_{32})|m_1; x\rangle'' = \sum_{m=0}^{m_1} c_m^x(m_1) q^{m/2} \sqrt{[l-m_1+1][m_1-m]} |m_1-1; m\rangle' - \sum_{m=0}^{m_1} c_m^x(m_1) q^{l-2m_1-1+m/2} \sqrt{[l-m_1][m_1-m+1]} |m_1+1; m\rangle'$$
(24)

800

~

where $|m_1; x\rangle'' \equiv |m_1, 0; x\rangle'', c_m^x(m_1) = W(x)^{-1/2} a_m^x$ and W(x) is given by formula (22) at $m_2 = 0$. We have to express the sums on the right-hand side as linear combinations of vectors of the type $|m_1; x\rangle''$. (Note that it follows from the results of section 5 that m_1 and x are of the same evenness.) For this we need the relation

$$(\alpha - a)(1 - f) \,_{3}\varphi_{2}(\alpha, a, b; d, f; \hat{q}, z) = (\alpha - f)(1 - a) \,_{3}\varphi_{2}(\alpha, a\hat{q}, b; d, f\hat{q}; \hat{q}, z)$$

$$+(1-\alpha)(f-a)_{3}\varphi_{2}(\alpha\hat{q},a,b;\ d,f\hat{q};\ \hat{q},z)$$
(25)

which is proved by a direct calculation by comparing coefficients at z^n . Using this formula at

$$\hat{q} = q^{-2}$$
 $b = q^{2m}$ $d = 0$ $f = q^{2m_1}$
 $\alpha = q^{x+m_1}$ $a = -q^{m_1-x}$ $z = q^{-2}$

and the expression for $c_m^x(m_1)$ in terms of the q-hypergeometric function $_3\varphi_2$ we obtain the following recurrence relation for the coefficients $c_m^x(m_1)$:

$$c_m^x(m_1) = \left(\frac{[x]}{[2x][m_1 - m]}\right)^{1/2} \left\{ q^{(x-m-1)/2} \left(\frac{[m_1 + x][x - 1]}{[2x - 2]}\right)^{1/2} c_m^{x-1}(m_1 - 1) + q^{-(x+m+1)/2} \left(\frac{[m_1 - x][x + 1]}{[2x + 2]}\right)^{1/2} c_m^{x+1}(m_1 - 1) \right\}.$$
(26)

Next we need the relation

$${}_{3}\varphi_{2}(\hat{q}^{-n},a,b;\ d,f;\ \hat{q},\hat{q}) = \frac{(1-d/b)(1-\hat{q}/f)}{(1-a/b)(1-\hat{q}^{1-n}/f)} {}_{3}\varphi_{2}(\hat{q}^{-n},a,b\hat{q}^{-1};\ d,f\hat{q}^{-1};\ \hat{q},\hat{q}) + \frac{(1-d/a)(1-\hat{q}/f)}{(1-b/a)(1-\hat{q}^{1-n}/f)} {}_{3}\varphi_{2}(\hat{q}^{-n},a\hat{q}^{-1},b;\ d,f\hat{q}^{-1};\ \hat{q},\hat{q}).$$
(27)

This formula is proved in the following way. By comparing coefficients at z^n the following relation is proved:

$$(\alpha - A)_{3}\varphi_{2}(\alpha, A, B; d, E; \hat{q}, z) = \alpha(1 - A)_{3}\varphi_{2}(\alpha, A\hat{q}, B; d, E; \hat{q}, z)$$
$$-A(1 - \alpha)_{3}\varphi_{2}(\alpha\hat{q}, A, B; d, E; \hat{q}, z).$$

Then we set $z = \hat{q}$, $B = \hat{q}^{-n}$ and apply to every $_{3}\varphi_{2}$ the symmetry relation (3.2.3) from [15]. Using the renotation $\alpha = d/a$, A = d/b and E = df/ab, we obtain relation (27). Using relation (27) at $\hat{q} = q^{-2}$, $f = q^{2m_1}$, $a = q^{x+m_1}$ and $B = -q^{m_1-x}$ we derive

$$c_m^x(m_1) = \left(\frac{[x]}{[2x][m_1 - m + 1]}\right)^{1/2} \left\{ q^{-(x+m)/2} \left(\frac{[m_1 - x + 2][x - 1]}{[2x - 2]}\right)^{1/2} c_m^{x-1}(m_1 + 1) + q^{(x-m)/2} \left(\frac{[m_1 + x + 2][x + 1]}{[2x + 2]}\right)^{1/2} c_m^{x+1}(m_1 + 1) \right\}.$$
(28)

We substitute expression (26) for $c_m^x(m_1)$ into the first sum in (24) and expression (28) into the second sum in (24), and then use formulae (14) and (23) with $m_2 = 0$ and with m_1 replaced by $m_1 - 1$ for the first sum and by $m_1 + 1$ for the second sum. As a result, after some calculation we derive

$$T_{l,0}(I_{32})|m_1; x\rangle = -A(x)B(x, m_1)|m_1 + 1; x + 1\rangle - A(-x)B(-x, m_1)|m_1 + 1; x - 1\rangle +A(x)B(-x - 1, m_1 - 1)|m_1 - 1; x + 1\rangle +A(-x)B(x - 1, m_1 - 1)|m_1 - 1; x - 1\rangle$$
(29)

where $|m_1; x\rangle = q^{-m_1(m_1-l)/2} |m_1; x\rangle''$ and

$$A(x) = \left(\frac{[x][x+1]}{[2x][2x+2]}\right)^{1/2} \qquad B(x,m_1) = q^{(l-2m_1+x-1)/2}([l-m_1][m_1+x+2])^{1/2}$$

This formula will be used below.

7. The $U_a'(so_3)$ bases of $U_q(sl_3)$ representation spaces

In this section we find the basis of the vector space $V_{l,0}$ of the representation $T_{l,0}$ of the algebra $U_q(sl_3)$ for which the operators $T_{l,0}(I_{21})$ and $T_{l,0}(I_{32})$ are of the form (6) and (7), respectively. Let

$$|m_1; x\rangle = \sum_r b_r^{m_1}(x)|r, x\rangle'$$
 (30)

where $|m_1; x\rangle$ are the basis elements from (29) and $|r, x\rangle'$ are basis elements which must be found, that is,

$$T_{l,0}(I_{32})|r,x\rangle' = \frac{[x]}{[2x]}([r-x][r+x+1])^{1/2}|r,x+1\rangle' -\frac{[x]}{[2x]}([r-x+1][r+x])^{1/2}|r,x-1\rangle'$$

and $T_{l,0}(I_{21})|r, x\rangle' = i[x]|r, x\rangle'$. Then

$$T_{l,\mathbf{0}}(I_{32})|m_1; x\rangle = \sum_r b_r^{m_1}(x) T_{l,\mathbf{0}}(I_{32})|r, x\rangle'.$$
(31)

Substituting here the expression (29) for $T_{l,0}(I_{32})|m_1; x$ and comparing coefficients at the vector $|r, x + 1\rangle'$ and then at the vector $|r, x - 1\rangle'$ we obtain the relations

$$C_{x+1}^{m_1-1}b_r^{m_1-1}(x+1) - A_{x+1}^{m_1+1}b_r^{m_1+1}(x+1) = b_r^{m_1}(x)\frac{[x]}{[2x]}([r-x][r+x+1])^{1/2}$$
(32)

$$D_{x-1}^{m_1-1}b_r^{m_1-1}(x-1) - B_{x-1}^{m_1+1}b_r^{m_1+1}(x-1) = -b_r^{m_1}(x)\frac{[x]}{[2x]}([r-x+1][r+x])^{1/2}$$
(33)

where

$$A_{x+1}^{m_1+1} = A(x)B(x,m_1) \qquad B_{x-1}^{m_1+1} = A(-x)B(-x,m_1) C_{x+1}^{m_1-1} = A(x)B(-x-1,m_1-1) \qquad D_{x-1}^{m_1-1} = A(-x)B(x-1,m_1-1).$$

We have from (33) that

$$b_r^{m_1}(x) = \frac{[2x]}{[x]}([r-x+1][r+x])^{-1/2}(B_{x-1}^{m_1+1}b_r^{m_1+1}(x-1) - D_{x-1}^{m_1-1}b_r^{m_1-1}(x-1)).$$

Substituting this expression with (m_1, x) replaced by $(m_1 - 1, x + 1)$ and then by $(m_1 + 1, x + 1)$ into (32), we obtain the recurrence relation for $b_r^{m_1}(x)$ with fixed *r* and *x*:

$$A_{x+1}^{m_1+1} B_x^{m_1+2} b_r^{m_1+2}(x) - (A_{x+1}^{m_1+1} D_x^{m_1} + C_{x+1}^{m_1-1} B_x^{m_1}) b_r^{m_1}(x) + C_{x+1}^{m_1-1} D_x^{m_1-2} b_r^{m_1-2}(x) = -\frac{[x][x+1]}{[2x][2x+2]} [r-x][r+x+1] b_r^{m_1}(x).$$

Introducing the notation

$$N = (l - x)/2 \qquad n = (m_1 - x)/2 \qquad b_r^{m_1}(x) \equiv b_r^{2n+x}(x) = M P_n^x(r)$$

where

$$M = q^{n(x+3/2)} \left(\frac{[2n+2x]!![2N-2n-1]!![2N]!!}{[2n]!![2N-2n]!![2x]!![2N-1]!!} \right)^{1/2}$$

and using the explicit expressions for the coefficients A, B, C and D after some calculation we derive

$$A_n P_{n+1}^x(r) + C_n P_{n-1}^x(r) - (A_n + C_n) P_n^x(r) = -(1 - q^{2(r-x)})(1 - q^{-2(r+x+1)}) P_n^x(r)$$
(34)

where

$$A_n = (1 - q^{-4(n-N)})(1 - q^{-4(n+x+1)})$$

$$C_n = q^{-2(2x+1)}(1 - q^{-4n})(1 - q^{-4(n-N-1/2)}).$$

We compare this relation with the recurrence relation

$$A_n R_{n+1}(\mu(y)) - (A_n + C_n) R_n(\mu(y)) + C_n R_{n-1}(\mu(y)) = -(1 - \hat{q}^{-y})(1 - \gamma \delta \hat{q}^{y+1}) R_n(\mu(y))$$
(35)

with

$$A_n = (1 - \hat{q}^{n-N})(1 - \gamma \hat{q}^{n+1}) \qquad C_n = \gamma \hat{q}(1 - \hat{q}^n)(\delta - \hat{q}^{n-N-1})$$

for dual q-Hahn polynomials

$$R_n(\mu(y)); \gamma, \delta, N \mid \hat{q}) = {}_{3}\varphi_2(\hat{q}^{-n}, \hat{q}^{-y}, \gamma \delta \hat{q}^{y+1}; \gamma \hat{q}, \hat{q}^{-N}; \hat{q}, \hat{q})$$

where $\mu(y) = \hat{q}^{-y} + \gamma \delta \hat{q}^{y+1}$ (see [22]).

The relation (34) coincides with the recurrence relation (35) if we set

$$\nu = q^{-4x}$$
 $\delta = q^2$ $y = (r - x)/2$

and consider that l, x and r are of the same evenness. (Note that m_1 and x are of the same evenness as shown in section 5.) Therefore,

$$P_n^x(r) = R_n(\mu(y); q^{-4x}, q^2, N | q^{-4})$$

= ${}_3\varphi_2(q^{4n}, q^{2r-2x}, q^{-2(x+r+1)}; q^{-4x-4}, q^{4N}; q^{-4}, q^{-4}).$

Since $MP_n^x(r) = b_r^{m_1}(x)$, then for coefficients $b_r^{m_1}(x)$ from (30) we have

$$b_r^{m_1}(x) = q^{n(x+3/2)} \left(\frac{[2n+2x]!![2N-2n-1]!![2N]!!}{[2n]!![2N-2n]!![2x]!![2N-1]!!} \right)^{1/2} R_n(\mu(y); \ q^{-4x}, q^2, N \mid q^{-4})$$
(36)

where $N = \frac{1}{2}(l-x)$, $n = \frac{1}{2}(m_1 - x)$ and $\mu(y) = q^{2(r-x)} + q^{-2(x+r+1)}$. The orthogonality relation for the coefficients $b_r^{m_1}(x)$ follows from the orthogonality for the dual q-Hahn polynomials which can be found in [22]. From the last orthogonality we derive that

$$\sum_{r} b_{r}^{m_{1}}(x) b_{r}^{m_{1}'}(x) W'(r) = \delta_{m_{1}m_{1}'}$$
(37)

where summation is over $r = x, x + 2, x + 4, \dots, l$ and

$$W'(r) = \frac{q^{\frac{1}{2}(r-x)(r+x+1)-(l-x)(x+1)}[l-x]![r+x]![2r+1]}{[r-x]![l+r+1]!![l-r]!![2x]!!}.$$

Formula (37) means that the vectors $|r, x\rangle'$ from (30) are not normalized. The vectors

$$|r,x\rangle = W'(r)^{-1/2}|r,x\rangle'$$

are normalized. This normalization does not change the formula for the operator $T_{l,0}(I_{32})$. We have

$$|r,x\rangle = \sum_{m_1} b_r^{m_1}(x) W(r)^{1/2} |m_1;x\rangle \qquad |m_1;x\rangle = \sum_r b_r^{m_1}(x) W(r)^{1/2} |r,x\rangle.$$

In formula (36), m_1 and r are of the same evenness. If m_1 and r are of different evenness, then we can calculate $b_r^{m_1}(x)$ by means of the formula

$$b_r^{m_1}(x) = q^{(l-2m_1)/2} \left(\frac{[2x][x-1]q^{-x}}{[x][2x-2][r+x][r-x+1]} \right)^{1/2} \\ \times \left(q^{-1/2} \sqrt{[l-m_1][m_1-x+2]} b_r^{m_1+1}(x-1) \right) \\ -q^x \sqrt{[m_1+x][l-m_1+1]} b_r^{m_1-1}(x-1) \right)$$

or by the formula

$$b_r^{m_1}(x) = -q^{(x-l)/2} \left(\frac{[r-x+1][x-1][r+x][m_1+x]}{[x][2x-2][2x][l-m_1+1]} \right)^{1/2} b_r^{m_1-1}(x-1) -q^{-(l+x)/2} \left(\frac{[x+1][r-x][r+x+1][m_1-x]}{[2x+2][2x][x][l-m_1+1]} \right) b_r^{m_1-1}(x+1).$$

These formulae are derived from (32) and (33). They express the coefficients $b_r^{m_1}(x)$ with different evenness of m_1 and r in terms of the coefficients with the same evenness of m_1 and r.

8. Representations of $U_q(sl_3)$ in the $U'_q(so_3)$ basis

Now we wish to obtain formulae showing how operators of the representation $T_{l,0}$ of the algebra $U_q(sl_3)$ act upon the basis $|r, x\rangle$ derived in the previous section. It is enough to derive such a formula only for the operator $T_{l,0}(q^{2H_3})$ corresponding to the element $q^{2H_3} \in U_q(gl_3)$ (see section 2). The formulae for other operators can be obtained by commuting the operator $T_{l,0}(q^{2H_3})$ with the operators corresponding to elements of the subalgebra $U'_q(so_3)$. Since $T_{l,0}(q^{H_3})|m_1; m\rangle = q^{m_1-l}|m_1; m\rangle$ (see section 4), then

$$T_{l,\mathbf{0}}(q^{2H_3})|m_1; x\rangle = q^{2m_1-2l}|m_1; x\rangle.$$

We have

$$T_{l,0}(q^{2H_3})|r, x\rangle = T_{l,0}(q^{2H_3}) \sum_{m_1} W(r)^{1/2} b_r^{m_1}(x)|m_1; x\rangle$$
$$= \sum_{m_1} q^{2m_1 - 2l} \hat{b}_r^{m_1}(x)|m_1; x\rangle$$
(38)

where $\hat{b}_r^{m_1}(x) = W(r)^{1/2} b_r^{m_1}(x)$. Using the difference equation $(\hat{q}^{-n} - 1)R_n(\mu(y)) = B(y)R_n(\mu(y+1)) - (B(y) + D(y))R_n(\mu(y)) + D(y)R_n(\mu(y-1))$ for the dual *q*-Hahn polynomials $R_n(\mu(y); \gamma, \delta, N | \hat{q})$, where $(1 - \hat{q}^{\gamma-N})(1 - \hat{q}^{\gamma+1})(1 - \hat{q}^{\gamma+1})$

$$B(y) = \frac{(1-q^{y-N})(1-\gamma q^{y+1})(1-\gamma \delta q^{2y+1})}{(1-\gamma \delta \hat{q}^{2y+1})(1-\gamma \delta \hat{q}^{2y+2})}$$
$$D(y) = -\frac{\gamma \hat{q}^{y-N}(1-\hat{q}^{y})(1-\gamma \delta \hat{q}^{y+N+1})(1-\delta \hat{q}^{y})}{(1-\gamma \delta \hat{q}^{2y})(1-\gamma \delta \hat{q}^{2y+1})}$$

804

(see [22]), we derive from the expression for $\hat{b}_r^{m_1}(x)$ in terms of these polynomials the following recurrence relation for $\hat{b}_r^{m_1}(x)$:

$$q^{-2(l-m_1)}\hat{b}_r^{m_1}(x) = -\hat{B}(r)\hat{b}_{r+2}^{m_1}(x) - \hat{B}(r-2)\hat{b}_{r-2}^{m_1}(x) + \hat{C}(r)\hat{b}_r^{m_1}(x)$$
(39)

where

$$\begin{split} \hat{B}(r) &= \frac{q-q^{-1}}{q^{(2l+1)/2}} \left(\frac{[l-r][l+r+3][r-x+1][r-x+2][r+x+1]}{[2r+1][2r+5][2r+3]^2[r+x+2]^{-1}} \right)^{1/2} \\ \hat{C}(r) &= \frac{q^{-l}(q-q^{-1})}{[2r+3]} \left(\frac{q^{r+1}[l-r][r+x+1]}{[2r+1][r+x+2]^{-1}} + \frac{q^{-r}[r-x][r+l+1]}{[2r-1][r-x-1]^{-1}} \right) + q^{2x-2l}. \end{split}$$

We substitute the expression (39) for $\hat{b}_r^{m_1}(x)$ into (38) and find on the right-hand side the expressions for the vectors $|r+2, x\rangle$, $|r-2, x\rangle$ and $|r, x\rangle$ in terms of the vectors $|m_1; x\rangle$. This turns (38) into the formula

$$T_{l,0}(q^{2H_3})|r,x\rangle = -\hat{B}(r)|r+2,x\rangle - \hat{B}(r-2)|r-2,x\rangle + \hat{C}(r)|r,x\rangle$$
(40)

where $\hat{B}(r)$ and $\hat{C}(r)$ are such as in (39). This is the desired formula for the operator $T_{l,0}(q^{2H_3})$.

Acknowledgments

The research of the second author was supported in part by award no UP1-2115 of the Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF).

References

- [1] Elliott J P 1958 Proc. R. Soc. A 245 128
- [2] Arima A and Iachello F 1979 Ann. Phys. 123 468
- [3] Iachello F and Levine R D 1982 J. Chem. Phys. 77 3046
- [4] Van der Jeugt 1992 J. Phys. A: Math. Gen. 25 2213
- [5] Sciarrino A 1994 Symmetries in Science VII ed B Gruber (New York: Plenum) p 115
- [6] Raychev P, Poussev R, Iudice N and Terziev P 1997 J. Phys. A: Math. Gen. 30 4383
- [7] Klimyk A and Schmüdgen K 1997 Quantum Groups and their Representations (Berlin: Springer)
- [8] Fairlie D 1990 J. Phys. A: Math. Gen. 23 L183
- [9] Odesski A 1986 Func. Anal. Appl. 20 152
- [10] Havlíček M, Klimyk A and Pošta S 1999 J. Math. Phys. 40 2135
- [11] Nelson J, Regge T and Zertuche F 1990 Nucl. Phys. B 339 516
- [12] Chekhov L and Fock V 2000 Czech. J. Phys. 50 1201
- [13] Bullock D and Przytycki J H 1999 Preprint math. QA/9902117
- [14] Iorgov N Z and Klimyk A U 2000 Methods Funct. Anal. Topol. 6 56
- [15] Noumi M 1993 Adv. Math. 123 16
- [16] Noumi M, Umeda T and Wakayama M 1996 Compos. Math. 104 227
- [17] Iorgov N Z and Klimyk A U 2001 J. Math. Phys. 42 2135
- [18] Drinfeld V G 1985 Sov. Math. Dokl. 32 254
- [19] Jimbo M 1985 Lett. Math. Phys. 10 63
- [20] Gavrilik A M and Klimyk A U 1991 Lett. Math. Phys. 21 215
- [21] Stanton D 1980 Am. J. Math. 102 625
- [22] Gasper G and Rahman M 1990 Basic Hypergeometric Functions (Cambridge: Cambridge University Press)
- [23] Vilenkin Ja N and Klimyk A U 1993 Representation of Lie Groups and Special Functions vol 2 (Dordrecht: Kluwer)
- [24] Elliott J and Harvey M 1963 Proc. R. Soc. 272 557